Перевод: с русского на английский

с английского на русский

реле системы управления

  • 1 реле системы управления

    Aviation: pilot relay

    Универсальный русско-английский словарь > реле системы управления

  • 2 Реле управления коллектором на линии клапанов системы сброса воды за борт установки Koomey

    Универсальный русско-английский словарь > Реле управления коллектором на линии клапанов системы сброса воды за борт установки Koomey

  • 3 канал управления

    Русско-английский словарь по информационным технологиям > канал управления

  • 4 пит канавки управления

    Русско-английский словарь по информационным технологиям > пит канавки управления

  • 5 контактная система управления

    1. electromechanical control

     

    контактная система управления
    релейно-контактная система управления

    Система управления, построенная на контактных элементах (как правило, на реле).
    Антонимы:
    - бесконтактная система управления
    - микропроцессорная система управления (если используется микропроцессор)

    [Интент]

    Параллельные тексты EN-RU

    The electromechanical control consists of contactors, time-delay relays and operations counters.
    The contactors switch high-power loads (motors).
    The operating cycle counters record each switching operation of the circuit breaker.

    [Siemens]

    В состав контактной системы управления входят контакторы, реле времени и счетчики коммутационных циклов.
    Контакторы предназначены для коммутации мощных нагрузок (электродвигателей).
    Счетчики используются для подсчета коммутационных циклов силовых выключателей.

    [Перевод Интент]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > контактная система управления

  • 6 насос сплинкерной системы пожаротушения

    1. jockey pump

     

    насос сплинкерной системы пожаротушения
    жокей-насос

    -

    Принцип работы насосной установки спринклерной системы пожаротушения,  в  состав которой входит жокей-насос
    В случае падения давления воды в спринклерной системе, первым включается жокей-насос. Если расход воды небольшой и жокей-насос справляется с восполнением утечки, то через некоторое время после достижения верхнего предела заданного давления он выключится. Если же это не протечка, а открылось несколько спринклеров и расход воды значительный, то даже при работающем жокей-насосе давление продолжает падать. В этом случае, по сигналу второго реле давления, включается пожарный насос. Резервный агрегат включается в случае невыхода основного на рабочий режим. Независимо от того, потушен пожар или нет, пожарные насосы сами не отключаются, их можно выключить только вручную со шкафа управления.
    [ http://www.airweek.ru/pr_news_137.html]


    Jockey Pump

    A jockey pump is a small pump connected to a fire sprinkler system and is intended to maintain pressure in a fire protection piping system to an artificially high level so that the operation of a single fire sprinkler will cause an appreciable pressure drop which will be easily sensed by the fire pump automatic controller, causing the fire pump to start. The jockey pump is essentially a portion of the fire pump's control system.
    In the U.S.
    The application of a jockey pump in a fire protection system is covered by documents produced by the NFPA (National Fire Protection Association,) known as NFPA 20 "Fire Pumps" Standard and NFPA 13 "Design and Installation of Fire Sprinkler Systems". These must be inspected as with any other part of the system per NFPA 25 "Inspection and Testing of Water-Based Fire Protection Systems".Fire protection systems are governed in most states by statute, building code, and/or fire code.
    In India
    This jockey pump is also a must while designing the Fire Hydrants Pumps skid for Industrial installations.While the logic followed for the effective operation of the fire fighting pumps may depend upon or vary as per the regulations in a particular country, in India, the pump manufacturers like Mather-Platt with standard Fire Pumps generally adhere to the TAC guidelines (Tariff Advisory Committee guidelines).
    Although India's premier manufacturer Kirloskar Brothers Limited, with approvals from UL and FM Global, LPCB, ASIB: follows TAC guidelines (Tariff Advisory Committee guidelines), or FM GLobal and UL standards depending on the clients needs.
    If one is following the TAC guidelines, follow this approach

    *Once the complete fire fighting circuit is under pressure by operating the pumps for sufficient time provided all the fire hydrant valves (Single yard hydrants, Fire escape hydrants, etc)are closed, the main pump stops.
    *Due to some leakages somewhere in the fire fighting piping circuit, when there is a loss of system pressure which will be constantly monitored by the Pressure sensors in the circuit, the jockey pumps receives a signal to start from the automatic control panel, and will run to augment this loss of pressure by pumping more water into the circuit. Once the pressure is maintained as per the set point, it stops.
    *If any hydrant valve is opened due to some fire and water is consumed, then the jockey pump due to its small capacity compared to the main pumps (one running, one stand-by)in terms of volumetric capacity, the main pump will start and then the jockey immediately stops.This way jockey pump is important which senses the loss of pressure in the circuit first.

    [ http://en.wikipedia.org/wiki/Jockey_pump#Jockey_Pump]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > насос сплинкерной системы пожаротушения

  • 7 программируемый логический контроллер

    1. storage-programmable logic controller
    2. Programmable Logic Controller
    3. programmable controller
    4. PLC

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-английский словарь нормативно-технической терминологии > программируемый логический контроллер

  • 8 синхронизация времени

    1. time synchronization
    2. clock synchronization

     

    синхронизация времени
    -
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Также нормированы допустимые временные задержки для различных видов сигналов, включая дискретные сигналы, оцифрованные мгновенные значения токов и напряжений, сигналы синхронизации времени и т.п.
    [Новости Электротехники №4(76) | СТАНДАРТ МЭК 61850]

    Широковещательное сообщение, как правило, содержит адрес отправителя и глобальный адрес получателя. Примером широковещательного сообщения служит синхронизация времени.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    Устройства последних поколений дают возможность синхронизации времени с точностью до микросекунд с помощью GPS.

    С помощью этого интерфейса сигнал синхронизации времени (от радиоприемника DCF77 сигнал точного времени из Braunschweig, либо от радиоприемника iRiG-B сигнал точного времени  глобальной спутниковой системы GPS) может быть передан в терминал для точной синхронизации времени.

    [Герхард Циглер. ЦИФРОВАЯ ДИСТАНЦИОННАЯ ЗАЩИТА. ПРИНЦИПЫ И ПРИМЕНЕНИЕ
    Перевод с английского ]

    В  том  случае  если  принятое  сообщение  искажено ( повреждено)  в  результате неисправности  канала  связи  или  в  результате  потери  синхронизации  времени, пользователь имеет возможность...

    2.13 Синхронизация часов реального времени сигналом по оптовходу 
    В современных системах релейной защиты зачастую требуется синхронизированная работа часов всех реле в системе для восстановления хронологии работы разных реле.
    Это может быть выполнено с использованием сигналов синхронизации времени   по интерфейсу IRIG-B, если  реле  оснащено  таким  входом  или  сигналом  от  системы OP

    [Дистанционная защита линии MiCOM P443/ ПРИНЦИП  РАБОТЫ]


    СИНХРОНИЗАЦИЯ ВРЕМЕНИ СОГЛАСНО СТАНДАРТУ IEEE 1588

    Автор: Андреас Дреер (Hirschmann Automation and Control)

    Вопрос синхронизации устройств по времени важен для многих распределенных систем промышленной автоматизации. При использовании протокола Precision Time Protocol (PTP), описанного стандартом IEEE 1588, становится возможным выполнение синхронизации внутренних часов устройств, объединенных по сети Ethernet, с погрешностями, не превышающими 1 микросекунду. При этом к вычислительной способности устройств и пропускной способности сети предъявляются относительно низкие требования. В 2008 году была утверждена вторая редакция стандарта (IEEE 1588-2008 – PTP версия 2) с рядом внесенных усовершенствований по сравнению с первой его редакцией.

    ЗАЧЕМ НЕОБХОДИМА СИНХРОНИЗАЦИЯ УСТРОЙСТВ ПО ВРЕМЕНИ?

    Во многих системах должен производиться отсчет времени. О неявной системе отсчета времени можно говорить тогда, когда в системе отсутствуют часы и ход времени определяется процессами, протекающими в аппаратном и программном обеспечении. Этого оказывается достаточно во многих случаях. Неявная система отсчета времени реализуется, к примеру, передачей сигналов, инициирующих начало отсчета времени и затем выполнение определенных действий, от одних устройств другим.

    Система отсчета времени считается явной, если показания времени в ней определяются часами. Указанное необходимо для сложных систем. Таким образом, осуществляется разделение процедур передачи данных о времени и данных о процессе.

    Два эффекта должны быть учтены при настройке или синхронизации часов в отдельных устройствах. Первое – показания часов в отдельных устройствах изначально отличаются друг от друга (смещение показаний времени друг относительно друга). Второе – реальные часы не производят отсчет времени с одинаковой скоростью. Таким образом, требуется проводить постоянную корректировку хода самых неточных часов.

    ПРЕДЫДУЩИЕ РЕШЕНИЯ

    Существуют различные способы синхронизации часов в составе отдельных устройств, объединенных в одну информационную сеть. Наиболее известные способы – это использование протокола NTP (Network Time Protocol), а также более простого протокола, который образован от него – протокола SNTP (Simple Network Time Protocol). Данные методы широко распространены для использования в локальных сетях и сети Интернет и позволяют обеспечивать синхронизацию времени с погрешностями в диапазоне миллисекунд. Другой вариант – использование радиосигналов с GPS спутников. Однако при использовании данного способа требуется наличие достаточно дорогих GPS-приемников для каждого из устройств, а также GPS-антенн. Данный способ теоретически может обеспечить высокую точность синхронизации времени, однако материальные затраты и трудозатраты обычно препятствуют реализации такого метода синхронизации.

    Другим решением является передача высокоточного временного импульса (например, одного импульса в секунду) каждому отдельному устройству по выделенной линии. Реализация данного метода влечет за собой необходимость создания выделенной линии связи к каждому устройству.

    Последним методом, который может быть использован, является протокол PTP (Precision Time Protocol), описанный стандартом IEEE 1588. Протокол был разработан со следующими целями:

    • Обеспечение синхронизация времени с погрешностью, не превышающей 1 микросекунды.
    • Предъявление минимальных требований к производительности процессоров устройств и к пропускной способности линии связи, что позволило бы обеспечить реализацию протокола в простых и дешевых устройствах.
      • Предъявление невысоких требований к обслуживающему персоналу.
      • Возможность использования в сетях Ethernet, а также в других сетях.
      • Спецификация его как международного стандарта.

    ОБЛАСТИ ПРИМЕНЕНИЯ ПРОТОКОЛА PTP

    Протокол PTP может быть применен в различного рода системах. В системах автоматизации, протокол PTP востребован везде, где требуется точная синхронизация устройств по времени. Протокол позволяет синхронизировать устройства в робототехнике или печатной промышленности, в системах осуществляющих обработку бумаги и упаковку продукции и других областях.

    В общем и целом в любых системах, где осуществляется измерение тех или иных величин и их сравнение с величинами, измеренными другими устройствами, использование протокола PTP является популярным решением. Системы управления турбинами используют протокол PTP для обеспечения более эффективной работы станций. События, происходящие в различных частях распределенных в пространстве систем, определяются метками точного времени и затем для целей архивирования и анализа осуществляется их передача на центры управления. Геоученые используют протокол PTP для синхронизации установок мониторинга сейсмической активности, удаленных друг от друга на значительные расстояния, что предоставляет возможность более точным образом определять эпицентры землетрясений. В области телекоммуникаций рассматривают возможность использования протокола PTP для целей синхронизации сетей и базовых станций. Также синхронизация времени согласно стандарту IEEE 1588 представляет интерес для разработчиков систем обеспечения жизнедеятельности, систем передачи аудио и видео потоков и может быть использована в военной промышленности.

    В электроэнергетике протокол PTPv2 (протокол PTP версии 2) определен для синхронизации интеллектуальных электронных устройств (IED) по времени. Например, при реализации шины процесса, с передачей мгновенных значений тока и напряжения согласно стандарту МЭК 61850-9-2, требуется точная синхронизация полевых устройств по времени. Для реализации систем защиты и автоматики с использованием сети Ethernet погрешность синхронизации данных различных устройств по времени должна лежать в микросекундном диапазоне.

    Также для реализации функций синхронизированного распределенного векторного измерения электрических величин согласно стандарту IEEE C37.118, учета, оценки качества электрической энергии или анализа аварийных событий необходимо наличие устройств, синхронизированных по времени с максимальной точностью, для чего может быть использован протокол PTP.

    Вторая редакция стандарта МЭК 61850 определяет использование в системах синхронизации времени протокола PTP. Детализация профиля протокола PTP для использования на объектах электроэнергетики (IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications) в настоящее время осуществляется рабочей группой комитета по релейной защите и автоматике организации (PSRC) IEEE.

    ПРОТОКОЛ PTP ВЕРСИИ 2

    В 2005 году была начата работа по изменению стандарта IEEE1588-2002 с целью расширения возможных областей его применения (телекоммуникации, беспроводная связь и в др.). Результатом работы стало новое издание IEEE1588-2008, которое доступно с марта 2008 со следующими новыми особенностями:

    • Усовершенствованные алгоритмы для обеспечения погрешностей в наносекундном диапазоне.
    • Повышенное быстродействие синхронизации времени (возможна более частая передача сообщений синхронизации Sync).
    • Поддержка новых типов сообщений.
    • Ввод однорежимного принципа работы (не требуется передачи сообщений типа FollowUp).
    • Ввод поддержки функции т.н. прозрачных часов для предотвращения накопления погрешностей измерения при каскадной схеме соединения коммутаторов.
    • Ввод профилей, определяющих настройки для новых областей применения.
    • Возможность назначения на такие транспортные механизмы как DeviceNet, PROFInet и IEEE802.3/Ethernet (прямое назначение).
    • Ввод структуры TLV (тип, длина, значение) для расширения возможных областей применения стандарта и удовлетворения будущих потребностей.
    • Ввод дополнительных опциональных расширений стандарта.

    ПРИНЦИП ФУНКЦИОНИРОВАНИЯ СИСТЕМ НА ОСНОВЕ ПРОТОКОЛА PTP

    В системах, где используется протокол PTP, различают два вида часов: ведущие часы и ведомые часы. Ведущие часы, в идеале, контролируются либо радиочасами, либо GPS-приемниками и осуществляют синхронизацию ведомых часов. Часы в конечном устройстве, неважно ведущие ли они или ведомые, считаются обычными часами; часы в составе устройств сети, выполняющих функцию передачи и маршрутизации данных (например, в Ethernet-коммутаторах), считаются граничными часами.

    Процедура синхронизации согласно протоколу PTP подразделяется на два этапа. На первом этапе осуществляется коррекция разницы показаний времени между ведущими и ведомыми часами – то есть осуществляется так называемая коррекция смещения показаний времени. Для этого ведущее устройство осуществляет передачу сообщения для целей синхронизации времени Sync ведомому устройству (сообщение типа Sync). Сообщение содержит в себе текущее показание времени ведущих часов и его передача осуществляется периодически через фиксированные интервалы времени. Однако поскольку считывание показаний ведущих часов, обработка данных и передача через контроллер Ethernet занимает некоторое время, информация в передаваемом сообщении к моменту его приема оказывается неактуальной.   Одновременно с этим осуществляется как можно более точная фиксация момента времени, в который сообщение Sync уходит от отправителя, в составе которого находятся ведущие часы (TM1). Затем ведущее устройство осуществляет передачу зафиксированного момента времени передачи сообщения Sync ведомым устройствам (сообщение FollowUp). Те также как можно точнее осуществляют измерение момента времени приема первого сообщения (TS1) и вычисляют величину, на которую необходимо выполнить коррекцию разницы в показаниях времени между собою и ведущим устройством соответственно (O) (см. рис. 1 и рис. 2). Затем непосредственно осуществляется коррекция показаний часов в составе ведомых устройств на величину смещения. Если задержки в передачи сообщений по сети не было, то можно утверждать, что устройства синхронизированы по времени.

    На втором этапе процедуры синхронизации устройств по времени осуществляется определение задержки в передаче упомянутых выше сообщений по сети между устройствами. Указанное выполняется  при использовании сообщений специального типа. Ведомое устройство отправляет так называемое сообщение Delay Request (Запрос задержки в передаче сообщения по сети) ведущему устройству и осуществляет фиксацию момента передачи данного сообщения. Ведущее устройство фиксирует момент приема данного сообщения и отправляет зафиксированное значение в сообщении Delay Response (Ответное сообщение с указанием момента приема сообщения). Исходя из зафиксированных времен передачи сообщения Delay Request ведомым устройством и приема сообщения Delay Response ведущим устройством производится оценка задержки в передачи сообщения между ними по сети. Затем производится соответствующая коррекция показаний часов в ведомом устройстве. Однако все упомянутое выше справедливо, если характерна симметричная задержка в передаче сообщения в обоих направлениях между устройствами (то есть характерны одинаковые значения в задержке передачи сообщений в обоих направлениях).

    Задержка в передачи сообщения в обоих направлениях будет идентичной в том случае, если устройства соединены между собой по одной линии связи и только. Если в сети между устройствами имеются коммутаторы или маршрутизаторы, то симметричной задержка в передачи сообщения между устройствами не будет, поскольку коммутаторы в сети осуществляют сохранение тех пакетов данных, которые проходят через них, и реализуется определенная очередность их передачи. Эта особенность может, в некоторых случаях, значительным образом влиять на величину задержки в передаче сообщений (возможны значительные отличия во временах передачи данных). При низкой информационной загрузке сети этот эффект оказывает малое влияние, однако при высокой информационной загрузке, указанное может значительным образом повлиять на точность синхронизации времени. Для исключения больших погрешностей был предложен специальный метод и введено понятие граничных часов, которые реализуются в составе коммутаторов сети. Данные граничные часы синхронизируются по времени с часами ведущего устройства. Далее коммутатор по каждому порту является ведущим устройством для всех ведомых устройств, подключенных к его портам, в которых осуществляется соответствующая синхронизация часов. Таким образом, синхронизация всегда осуществляется по схеме точка-точка и характерна практически одинаковая задержка в передаче сообщения в прямом и обратном направлении, а также практическая неизменность этой задержки по величине от одной передачи сообщения к другой.

    Хотя принцип, основанный на использовании граничных часов показал свою практическую эффективность, другой механизм был определен во второй  версии протокола PTPv2 – механизм использования т. н. прозрачных часов. Данный механизм  предотвращает накопление погрешности, обусловленной изменением величины задержек в передаче сообщений синхронизации коммутаторами и предотвращает снижение точности синхронизации в случае наличия сети с большим числом каскадно-соединенных коммутаторов. При использовании такого механизма передача сообщений синхронизации осуществляется от ведущего устройства ведомому, как и передача любого другого сообщения в сети. Однако когда сообщение синхронизации проходит через коммутатор фиксируется задержка его передачи коммутатором. Задержка фиксируется в специальном поле коррекции в составе первого сообщения синхронизации Sync или в составе последующего сообщения FollowUp (см. рис. 2). При передаче сообщений Delay Request и Delay Response также осуществляется фиксация времени задержки их в коммутаторе. Таким образом, реализация поддержки т. н. прозрачных часов в составе коммутаторов позволяет компенсировать задержки, возникающие непосредственно в них.

    РЕАЛИЗАЦИЯ ПРОТОКОЛА PTP

    Если необходимо использование протокола PTP в системе, должен быть реализован стек протокола PTP. Это может быть сделано при предъявлении минимальных требований к производительности процессоров устройств и к пропускной способности сети. Это очень важно для реализации стека протокола в простых и дешевых устройствах. Протокол PTP может быть без труда реализован даже в системах, построенных на дешевых контроллерах (32 бита).

    Единственное требование, которое необходимо удовлетворить для обеспечения высокой точности синхронизации, – как можно более точное измерение устройствами момента времени, в который осуществляется передача сообщения, и момента времени, когда осуществляется прием сообщения. Измерение должно производится максимально близко к аппаратной части (например, непосредственно в драйвере) и с максимально возможной точностью. В реализациях исключительно на программном уровне архитектура и производительность системы непосредственно ограничивают максимально допустимую точность.

    При использовании дополнительной поддержки аппаратного обеспечения для присвоения меток времени, точность может быть значительным образом повышена и может быть обеспечена ее виртуальная независимость от программного обеспечения. Для этого необходимо использование дополнительной логики, которая может быть реализована в программируемой логической интегральной схеме или специализированной для решения конкретной задачи интегральной схеме на сетевом входе.

    РЕЗУЛЬТАТЫ

    Компания Hirschmann – один из первых производителей, реализовавших протокол PTP и оптимизировавших его использование. Компанией был разработан стек, максимально эффективно реализующий протокол, а также чип (программируемая интегральная логическая схема), который обеспечивает высокую точность проводимых замеров.

    В системе, в которой несколько обычных часов объединены через Ethernet-коммутатор с функцией граничных часов, была достигнута предельная погрешность +/- 60 нс при практически полной независимости от загрузки сети и загрузки процессора. Также компанией была протестирована система, состоящая из 30 каскадно-соединенных коммутаторов, обладающих функцией поддержки т.н. прозрачных часов и были зафиксированы  погрешности менее в пределах +/- 200 нс.

    Компания Hirschmann Automation and Control реализовала протоколы PTP версии 1 и версии 2 в промышленных коммутаторах серии MICE, а также в серии монтируемых на стойку коммутаторов MACH100.

    ВЫВОДЫ

    Протокол PTP во многих областях уже доказал эффективность своего применения. Можно быть уверенным, что он получит более широкое распространение в течение следующих лет и что многие решения при его использовании смогут быть реализованы более просто и эффективно чем при использовании других технологий.

    [ Источник]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > синхронизация времени

  • 9 НКУ с устройствами ограничения воздействия внутренней дуги

    1. assembly equipped with devices limiting internal arc effects

     

    НКУ с устройствами ограничения воздействия внутренней дуги
    -
    [Интент]

    Параллельные тексты EN-RU

    Assemblies equipped with devices limiting internal arc effects (active protection)

    A design philosophy which is completely different from that just considered consists in guaranteeing the resistance to internal arcing by installing devices limiting the arc.

    The approaches in that direction can be of two different types:
    • limiting the destructive effects of the arc, once it has occured, by means of arc detectors
    • limiting the destructive effects of the arc, once it has occured, by means of overpressure detectors.

    The first possibility consists in installing in the assembly arc detectors which sense the light flux associated with the electric arc phenomenon.

    Once the arc has been detected, these devices send an opening signal to the incoming circuit-breaker, thus guaranteeing tripping times of the order of 1-2 ms, therefore shorter than those proper of the circuit-breaker.

    The operating logic of an arc detector is the following: the occurrence of an arc inside the switchboard is detected by the arc detector because an intense light radiation is associated with this phenomenon.

    The arcing control system detects the event and sends a tripping signal to the circuit-breaker.

    All the above with trip times of a few milliseconds and supplanting the tripping of the CB overcurrent relay which, for example, could be delayed due to current selectivity questions.

    Figure 1 shows the possible positions where this device can be installed inside a switchboard.

    The ideal solution is that which provides the installation of at least one detector for each column, with the consequent reduction to a minimum of the length of the optical fibers carrying the signal.

    In order to prevent from an unwanted tripping caused by light sources indepent of the arc (lamps, solar radiation etc.), an additional current sensor is often positioned at the incoming of the main circuit-breaker.

    Only in the event of an arc, both the incoming sensor which detects an “anomalous” current due to the arc fault as well as the sensor detecting the light radiation as sociated with the arc enable the system to intervene and allow the consequent opening of the circuit-breaker.

    The second possibility consists in installing overpressure sensors inside the switchboard.

    As previously described, the overpressure wave is one of the other effects occurring inside an assembly in case of arcing.

    As a consequence it is possible to install some pressure sensors which are able to signal the pressure peak associated with the arc ignition with a delay of about 10-15 ms.

    The signal operates on the supply circuit-breaker without waiting for the trip times of the selectivity protections to elapse, which are necessarily longer.

    Such a system does not need any electronic processing device, since it acts directly on the tripping coil of the supply circuit-breaker.

    Obviously it is essential that the device is set at fixed trip thresholds.

    When an established internal overpressure is reached, the arc detector intervenes.

    However, it is not easy to define in advance the value of overpressure generated by an arc fault inside a switchboard.

    [ABB]

    НКУ с устройствами ограничения воздействия внутренней дуги (активная защита)

    Для решения этой задачи используются совершенно другие, отличающиеся от ранее рассмотренных, принципы, заключающиеся в том, что противодействие внутренней дуге обеспечивается применением устройств, ограничивающих саму дугу.

    Существует два типа решения проблемы в этом направлении:
    • ограничение разрушающего воздействия дуги после того, как ее обнаружат специальные устройства
    • ограничение разрушающего воздействия дуги после того, как специальные устройства обнаружат возникновение избыточного давления.

    В первом случае в НКУ устанавливают устройства обнаружения дуги, реагирующие на световой поток, сопровождающий явление электрической дуги.

    При обнаружении дуги данные устройства посылают сигнал управления на размыкание вводного автоматического выключателя. Гарантируемое время реакции составляет 1-2 мс, что меньше времени срабатывания автоматического выключателя.

    Логика работы устройства обнаружения дуги следующая: Дуга, возникшая внутри НКУ, обнаруживается датчиком, реагирующим на интенсивное световое излучение, которым сопровождается горение дуги.

    Обнаружив дугу, система управления посылает сигнал автоматическому выключателю.

    Время срабатывания датчика и системы управления составляет несколько миллисекунд, что меньше времени срабатывания автоматического выключателя, осуществляющего защиту от сверхтока, который обычно для обеспечения требуемой селективности срабатывает с задержкой.

    На рис. 1 показаны места возможной установки устройства защиты внутри НКУ.

    Идеальным решением является установка, по крайней мере, одного устройства защиты в каждый шкаф многошкафного НКУ.

    Это позволит до минимума сократить длину оптоволоконных кабелей передачи сигнала.

    Для предотвращения ложного срабатывания от других источников света (т. е. не от дуги), например, таких как лампы, солнечное излучение и т. п., дополнительно в главной цепи вводного автоматического выключателя устанавливают датчик тока.

    Только при наличии двух событий, а именно: срабатывания датчика света и обнаружения аномального увеличения тока, система управления считает, что возникла электрическая дуга и подает команду на отключение вводного автоматического выключателя.

    Второе решение заключается в установке внутри НКУ датчика избыточного давления.

    Как было описано ранее, одним из характерных проявлений электрической дуги, возникшей внутри НКУ, является ударная волна.

    Это означает, что можно установить несколько датчиков давления, задачей которых является обнаружение импульса давления (с задержкой 10…15 мс), обусловленного зажиганием дуги.

    Сигнал от датчиков давления поступает на вводной автоматический выключатель, который срабатывает без задержки на обеспечение селективности.

    Такая система не нуждается в электронном устройстве обработки информации, поскольку воздействует непосредственно на независимый расцепитель автоматического выключателя.

    Вполне понятно, что такое устройство имеет фиксированный порог срабатывания.

    Датчик-реле дуги сработает, как только будет достигнуто заданное значение избыточного давления.

    Следует иметь в виду, что не так легко заранее определить значение избыточного давления, которое будет создано при зажигании дуги внутри НКУ.

    [Перевод Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    EN

    Русско-английский словарь нормативно-технической терминологии > НКУ с устройствами ограничения воздействия внутренней дуги

  • 10 undervoltage relay

    Англо-русский словарь промышленной и научной лексики > undervoltage relay

  • 11 релейная защита

    1. RP
    2. relaying
    3. relay protection
    4. protective relaying
    5. protection relay
    6. protection

     

    защита
    Совокупность устройств, предназначенных для обнаружения повреждений или других анормальных режимов в энергосистеме, отключения повреждения, прекращения анормальных режимов и подачи команд или сигналов.
    Примечания:
    1) Термин «защита» является общим термином для устройств защиты или систем защиты.
    2) Термин «защита» может употребляться для описания защиты целой энергосистемы или защиты отдельной установки в энергосистеме, например: защита трансформатора, защита линии, защита генератора.
    3) Защита не включает в себя оборудование установки энергосистемы, предназначенное, например, для ограничения перенапряжений в энергосистеме. Однако, она включает в себя оборудование, предназначенное для управления отклонениями напряжения или частоты в энергосистеме, такое как оборудование для автоматического управления реакторами для автоматической разгрузки и т.п.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    релейная защита

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    релейная защита

    релейная защита электрических систем
    Совокупность устройств (или отдельное устройство), содержащая реле и способная реагировать на короткие замыкания (КЗ) в различных элементах электрической системы — автоматически выявлять и отключать поврежденный участок. В ряде случаев Р. з. может реагировать и на др. нарушения нормального режима работы системы (например, на повышение тока, напряжения) — включать сигнализацию или (реже) отключать соответствующий элемент системы. КЗ — основной вид повреждений в электрических системах как по частоте возникновения, так и по масштабам отрицательных последствий. При КЗ наступает резкое и неравномерное понижение напряжения в системе и значительное увеличение тока в отдельных её элементах, что в конечном счёте может привести к прекращению электроснабжения потребителей и разрушению оборудования. Применение Р. з. сводит вредные последствия КЗ к минимуму.

    Р. з. срабатывает при изменениях определённых электрических величин. Чаще всего встречается Р. з., реагирующая на повышение тока (токовая защита). Нередко в качестве воздействующей величины используют напряжение. Применяют также Р. з., реагирующую на снижение отношения напряжения к току, которое пропорционально расстоянию (дистанции) от Р. з. до места КЗ (дистанционная защита). Обычно устройства Р. з. изолированы от системы; информация об электрических величинах поступает на них от измерительных трансформаторов тока или напряжения либо от др. измерительных преобразователей.

    Как правило, каждый элемент электрической системы (генератор, трансформатор, линию электропередачи и т.д.) оборудуют отдельными устройствами Р. з. Защита системы в целом обеспечивается комплексной селективной Р. з., при этом отключение поврежденного элемента осуществляется вполне определённым устройством Р. з., а остальные устройства, получая информацию о КЗ, не срабатывают. Такая Р. з. должна срабатывать при КЗ, внутренних по отношению к защищаемому элементу, не срабатывать при внешних, а также не срабатывать в отсутствии КЗ.

    Селективность (избирательность) Р. з. характеризуется протяжённостью зоны срабатывания защиты (при КЗ в пределах этой зоны Р. з. срабатывает с заданным быстродействием) и видами режимов работы системы, при которых предусматривается её несрабатывание. В зависимости от уровня селективности при внешних КЗ принято делить Р. з. на абсолютно селективные, не срабатывающие при любых внешних КЗ, относительно селективные, срабатывание которых при внешних КЗ предусмотрено только в случае отказа защиты или выключателя смежного поврежденного элемента, и неселективные, срабатывание которых допускается (в целях упрощения) при внешних КЗ в границах некоторой зоны. Наиболее распространены относительно селективные Р. з. Любая Р. з. должна удовлетворять требованиям устойчивости функционирования, характеризующейся совершенством способов "распознавания" защитой режима работы электрической системы, и надёжности функционирования, определяющейся в первую очередь отсутствием отказов устройств Р. з.

    Один из простейших путей достижения селективности Р. з. (обычно токовых и дистанционных) — применение реле, в которых между моментом возникновения требования о срабатывании реле и завершением процесса срабатывания проходит строго определённый промежуток времени, называется выдержкой времени (см. Реле времени).

    4608


    На рис. 1 показаны схема участка радиальной электрической сети с односторонним питанием (при котором ток к месту КЗ идёт с одной стороны), оснащенного относительно селективной Р. з., и соответствующие выдержки времени. Устройства Р. з. 1 и 2 имеют по три ступени, каждая из которых настроена на определённые значения входного сигнала т. о., что выдержка времени этих устройств ступенчато зависит от расстояния до места КЗ. Протяжённость зон, защищаемых отдельными ступенями, и соответствующие им выдержки времени выбираются с таким расчётом, чтобы устройства защиты поврежденных участков сети срабатывали раньше др. устройств. Зону первой ступени Р. з., не имеющей специального замедления срабатывания, приходится принимать несколько меньшей защищаемого участка, поскольку, например, устройство 1 не способно различить КЗ в точках K1 и K2. Последние ступени Р. з. (в Р. з., показанной на рис. 1, — третьи) — резервные, у них часто нет четко ограниченной зоны срабатывания.

    4609

    В сетях, в которых ток к месту КЗ может идти с двух сторон (от разных источников питания или по обходной связи), относительно селективные Р. з. выполняют направленными — срабатывающими только тогда, когда мощность КЗ передаётся через защищаемые элементы в условном направлении от шин ближайшей подстанции в линию. Так, при КЗ в точке К (рис. 2) могут сработать только устройства 1, 3, 4 и 6. При этом устройства 1 и 3 (4 и 6) для обеспечения селективности согласованы между собой по зонам срабатывания и выдержкам времени.

    В ряде случаев — на достаточно мощных генераторах, трансформаторах, линиях напряжением 110 кв и выше — для обеспечения высокого быстродействия Р. з. применяют сравнительно сложные абсолютно селективные защиты. Из них наиболее распространены т. н. продольные защиты, к которым для распознавания КЗ, в конце "своего" и в начале смежного участков подводится информация с разных концов элемента. Так, продольная дифференциальная токовая защита реагирует на геометрическую разность векторов токов на концах элемента. Эта разность при внешнем КЗ теоретически равна нулю, а при внутреннем — току в месте КЗ. В защитах др. типов производится сопоставление фаз векторов тока (дифференциально-фазная защита) или направлений потока мощности на концах элемента. К продольным защитам электрических машин и линий длиной примерно до 10 км информация об изменении электрических величин поступает непосредственно по соединительным проводам. На более длинных линиях для передачи такой информации обычно используют ВЧ каналы связи по проводам самой линии, а также УКВ каналы радиосвязи и радиорелейные линии.
    Э. П. Смирнов.
    [БСЭ, 1969-1978]

    НАЗНАЧЕНИЕ РЕЛЕЙНОЙ ЗАЩИТЫ

    В энергетических системах могут возникать повреждения и ненормальные режимы работы электрооборудования электростанций и подстанций, их распределительных устройств, линий электропередачи и электроустановок потребителей электрической энергии.
    Повреждения в большинстве случаев сопровождаются значительным увеличением тока и глубоким понижением напряжения в элементах энергосистемы.
    Повышенный ток выделяет большое количество тепла, вызывающее разрушения в месте повреждения и опасный нагрев неповрежденных линий и оборудования, по которым этот ток проходит.

    Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы генераторов и энергосистемы в целом.
    Ненормальные режимы обычно приводят к отклонению величин напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости энергосистемы, а повышение напряжения и тока угрожает повреждением оборудования и линий электропередачи.
    Таким образом, повреждения нарушают работу энергосистемы и потребителей электроэнергии, а ненормальные режимы создают возможность возникновения повреждений или расстройства работы энергосистемы.

    Для обеспечения нормальной работы энергетической системы и потребителей электроэнергии необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной сети, восстанавливая таким путем нормальные условия их работы и прекращая разрушения в месте повреждения.
    Опасные последствия ненормальных режимов также можно предотвратить, если своевременно обнаружить отклонение от нормального режима и принять меры к его устранению (например, снизить ток при его возрастании, понизить напряжение при его увеличении и т. д.).

    В связи с этим возникает необходимость в создании и применении автоматических устройств, выполняющих указанные операции и защищающих систему и ее элементы от опасных последствий повреждений и ненормальных режимов.
    Первоначально в качестве подобной защиты применялись плавкие предохранители. Однако по мере роста мощности и напряжения электрических установок и усложнения их схем коммутации такой способ защиты стал недостаточным, в силу чего были созданы защитные устройства, выполняемые при помощи специальных автоматов — реле, получившие название релейной защиты.

    Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная и надежная работа современных энергетических систем. Она осуществляет непрерывный контроль за состоянием и режимом работы всех элементов энергосистемы и реагирует на возникновение повреждений и ненормальных режимов.
    При возникновении повреждений защита выявляет и отключает от системы поврежденный участок, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения.

    При возникновении ненормальных режимов защита выявляет их и в зависимости от характера нарушения производит операции, необходимые для восстановления нормального режима, или подает сигнал дежурному персоналу.
    В современных электрических системах релейная защита тесно связана с электрической автоматикой, предназначенной для быстрого автоматического восстановления нормального режима и питания потребителей.

    К основным устройствам такой автоматики относятся:

    • автоматы повторного включения (АПВ),
    • автоматы включения резервных источников питания и оборудования (АВР),
    • автоматы частотной разгрузки (АЧР).

    [Чернобровов Н. В. Релейная защита. Учебное пособие для техникумов]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > релейная защита

  • 12 сигнализатор


    warning device /unit/
    (аварийной сигнализации)
    - (визуальный, звуковой) — signalling device
    к данным сигнализаторам относятся лампы, звонки, зуммеры и т.п.). — signalling devices are lamps, bells, buzzers) etc.
    - (датчик) — detector, switch, sensor
    - (индикатор аварийной сигнализации)warning indicator
    - (неаварийной сигнализации)indicator
    - (панель световых табло)(light) annunciator panel
    - (световой, аварийный) — warning light
    - (световой, неаварийный) — indicator light
    - (световой, е цветным фильтром) — jeweled warning (or indicator) light
    - (световое табло)(light) annunciator
    - (шторный, закрывающий индикаwию) — shutter
    - бленкера, флажковый — warning flag
    -, бленкерный — warning flag
    - вводаenter indicator
    индицирует состояние системы (омега) в режиме ввода данных в свой вычислитель. — indicates that ons is in the data entry mode.
    - включения сигнальной лампы (низкого давления масла)(low oil pressure) warning light switch
    - воздушной скорости (реле давления)airspeed switch
    - возникновения пожара (датчик)fire detector
    - времени (реле)time switch
    - высокой температуры (выходящих) газов турбины (индикатор)overtemperature tgt indicator
    -, высотный — altitude switch
    -, высоты — altitude switch
    устройство, электрические контакты которого замыкаются или размыкаются при достижении заданной высоты. — the altitude switch is a device in which the electrical contacts are made or broken at the predetermined altitude.
    - выхода на критический угол при отрыве носового колеса (при взлете)overrotation warning unit
    -, гидравлический — hydraulically-operated pressure switch
    - готовности (системы к рабате), световой — arming light
    сигнализатор готовности системы автоматического флюгирования. — automatic feathering arming light.
    - давленияpressure switch
    реле, срабатывающее при изменении подводимого давления газа или жидкости (рис. 93). — а switch actuated by а change in the pressure of a gas or liquid.
    - давления, воздушный (пневматический) — air-operated pressure switch
    - давления в фильтреfilter pressure switch
    - давления в фильтре (световой)filter pressure light
    - давления, дифференциальный — differential pressure switch
    - давления, малогабаритный, теплостойкий, виброустойчивый (мств-) — small-size heat-resistant vibration proof pressure switch
    - давления топлива в гидроцилиндрах к.п.в. — compressor bleed valve control cylinder fuel pressure switch
    - достижения предельной скорости — maximum operating limit speed (warning) switch /relay/
    - дымаsmoke detector
    - дыма, фотоэлектрический — photoelectric smoke detector
    - загрязнения масла (двиг.) — chip detector, chips-in-oil detector
    - засорения фильтра (магнитный)filter clogging detector
    - избыточного давленияdifferential pressure switch
    - износа (тормозных дисков колеса)wear indicator
    штырь сигнализатора износа закреплен к нажимному диску и выступает из корпуса тормоза, — the wear indicator rod is secured to the pressure disc and projects through the torque plate.
    - контроля, световой убедиться в загорании светосигнализаторов контроля положения предкрылков. — monitor light
    - критического угла атаки (датчик)stall sensor
    -, механический — mechanically-operated switch
    - минимального давления топлива на входе в hp (насос регулятор) — fcu/ffr/ inlet minimum fuel pressure switch
    -, мнемонический, световой — mnemonic indicating (or warning) light
    -, напоминающий (о пределе к-л. параметра) — reminder. airport minimum safe altitude remindeг.
    - нарушения питания (снп)power fail relay (pfr)
    срабатывает при прекращении подачи и понижении напряжения питания. — operates when the power supply is lost or underrated.
    - нарушения (параметров) питания (реле) реле, срабатывающее при нарушении параметров питания. — power relay. relay which functions at a predetermined value of power. it may be an overpower or underpower relay.
    - недостаточного (малого) давления топлива (масла), включающий лампу (или табло) — fuel (oil) low pressure warning light switch
    - неопределенности положения самолета относительно наземных станций и ошибок контрольных сумм памяти вычислителя — амв annunciator indicates position ambiguity or memory checksum error.
    - обледененияice detector
    - обледенения (входной части двигателя)(engine inlet section) ice detector
    - обледенения, двухштырьевой — dual probe ice detector
    - обледенения, радиоизотопный — radio-isotope ice detector
    - обледенения, штырьевой — probe ice detector
    - обнаружения (появления) дымаsmoke detector
    - обнаружения стружки (в масле двиг.) магнитный — magnetic chip detector
    - оборотов — speed /rpm/ sensitive switch
    - ограничения температуры (cot)temperature limit switch
    - опасного приближения к режиму сваливания, вибрационный (автомат тряски штурвала) — stick shaker. with stall warning test switch depressed, both stick shakers should operate.
    - опасной вибрации (двиг. 1) (световой) — (engine 1) vibration caution light
    - опасной высоты (световой, табло) — altitude alert light
    - опасных температур (сот) осуществляет переключения во внешней цепи, когда входной сигнал превышает уровень настройки задатчика. — overtemperature switch
    - остатка топлива (в баке)fuel (tank) low level switch
    сигнализирует о минимальном количестве топлива в баке. — low level warning of the fuel contents in tank no... is given by the fuel low level switch.
    - остатка топлива, поплавковый — fuel low float switch
    - остаточного давления в сети основного (аварийного) торможенияnormal (standby) brake residual pressure switch
    - отказа крм (курсового маяка) — localizer shutter, vor-loc flag, loc flag

    the localizer shutter or vor-loc flag covers the localizer runway when the localizer signal is lost.
    - отказа курса (прибора кпп) — localizer shutter, vor-loc flag, loc flag
    - отказа питания (датчик) — power fail /-lost/ relay /switch/
    - отказа питания (индикатор) — power fail /-lost/ indicator
    - отказа (сигнала) ворvor fail flag
    - отказа счетчика зпу (рис. 73) — course (counter) readout fail flag /shutter/
    - отказа счетчика дальности (в км) (рис. 73) — dme readout fail flag, dme fail flag /shutter/
    - отказа, шторный — shutter
    - отключения стабилизации антенны (рлс)ant stab off indicating light (for radar antenna stabilization turn-off)
    - открытого положения замка реверса тягиthrust reverser lock open position warning switch
    - отрицательного крутящего моментаnegative torque switch
    - первой и второй очереди разряда огнетушителей — (fire extinguisher) main and alternate (main, altn disch) discharge indicator
    - перегреваoverheat detector
    - перегрузки — g-switch, g switch
    - перегрузки (напр., пятикратной) — 5g-switch, 5g switch
    - перепада давленияdifferential pressure switch
    для контроля работы топливной системы, включающий табло засор. фильтра. — the switch is used to monitor the fuel system condition to actuate the light placarded filter clog.
    - перепада давления на (топливном) фильтре(fuel) filter differential pressure switch
    - перепада давления топлива (спт) (на выходе подкачивающего насоса бака)fuel differential pressure switch
    -, пилотажно-посадочный (ппс) — landing gear (and flaps) position indicating panel
    - повышенного давления (в топливном баке)(fuel tank) overpressure switch (ovpr sw)
    - (наличия или отсутствия) подвескиstore station status indicator
    - пожара (датчик)fire detector
    - пожара (лампа, табло) — fire warning light
    - пожара, быстродействующий — quick acting fire detector
    - пожара, контурный — continuous type fire detector
    - положения (индикатор)position indicator
    - положения закрылковflap position indicator
    - положения замка реверсивного устройстваthrust reverser (door) lock position switch
    - положения лопаток вна квдhp igv position switch
    - положения "обратной тяги створок реверса" — thrust reverser door /bucket/ deployed /extended/ position warning switch
    - положения рудthrottle position switch
    - положения рычага крана управления реверсивным устройствомthrust reverser control valve lever position switch
    - положения створок реверсивного устройстваthrust reverser door position switch
    - положения (угла) лопаток bha с углом установки 0° (или -33°) — 0° (or -33°) igv position switch
    - положения шассиlanding gear position indicator
    - помпажа (двиг.) — surge warning switch
    - появления металлической (стружки (спмс))chip detector
    - появления стружки (в маслосистеме двигателя) — chip detector, chip-in-oil detector
    - предельного значения скорости — maximum operating limit speed switch /relay/
    - предельного значения числа m — maximum operating limit mach number switch /relay/
    - предупреждения об отказе системы (табло)system failure warning annunciator
    - приборной скоростиias switch
    - работы (системы омега) в режиме счисления пути — dr /dead reckoning/ annunciator
    - разряда огнетушителей второй очереди (световой, загорающийся при разряде огнетушителей второй очереди) — alternate /reserve/ fire extinguisher discharge (altn firex disch) indicator light, fire agent no. 2 discharge (fire agent no. 2 disch) light
    - разряда огнетушителей первой очереди (световой) — main fire extinguisher discharge (main firex disch) light, fire agent no. 1 discharge (fire agent no. 1 disch) light
    - (само)разряда огнетушителейfire extinguisher discharge indicator
    - (само)разряда огнетушителей в результате воздейств я высокой температуры окружающей среды — fire extinguisher thermal discharge indicator
    - (само)разряда огнетушителей, мембранный — fire extinguisher discharge bursting disc indicator
    - (датчик) сваливания (самолета) — stall sensor /detector/
    - сваливания, вибрационный (автомат тряски штурвала) — stick shaker. stick shakers are activated by the stall warning system.
    -, световой аварийный (требующий немедленного действия, цвет обычно - красный) — warning light. warning lights are of red color to indicate a hazard requiring an immediate corrective action.
    -, световой предупредительный (рекомендующий выполнение какого-либо действия, обычно желтый) — caution light. caution lights are of amber color to indicate a possible need for future corrective action.
    -, световой уведомительный (сигнализирующий о положении или состоянии контролируемого элемента или системы, цвет (обычно зеленый) — indicator /indicating/ light. green lights are used solely for information not indicating a need for а corrective асtion.
    -, световой указательный (рекомендующий) — advisory light
    - скоростиspeed warning device
    сигнальное устройство, обеспечивающее выдачу звукаового сигнала при превышении заданной максимальной скорости. — speed warning device gives an effective aural warning to pilots whenever the speed exceeds the prescribed maximum speed.
    -скорости (приборной, типа сса) — ias switch
    - состояния синхронизации (сис. омега, по сигналам наземных станций) — omega synchronization status annunciator (syn)
    - сравнения работы двух инерциальных навигационных систем (световой)ins (system) comparison warning light
    - срыва потока (датчик) — stall sensor /detector/
    - "стрелка", мнемонический — warning arrow
    сигнализатор "стрелка" мигает при отказе прибора на другой приборной доске. — arrow will flash to indicate an instrument failure on орposite flight instrument panel.
    - стружки (наличия стружки в масле)chip detector
    - температурыtemperature (sensitive) switch
    - температуры подшипника (стп) (опоры двиг.) — bearing temperature detector (brg temp det)
    - толщины льда (стл)ice accretion detector
    -, трещеточный (издающий резкий прерывистый звук) — clacker a/с ovsp - clacker.
    - (-) указательindicator
    - уровня заправки (суз) (сливного бака санузла, поплавковый) — (float operated) fluid level switch
    - уровня заправки топливомfuel level switch
    - уровня топливаfuel level switch
    - уровня топлива, поплавковый — float-operated fuel level switch
    - цифровой индикацииnumerical display (annunciator)
    - числа mmach switch
    - эксплуатационных минимумов аэродромаairport minima reminder
    высотомеры имеют подвижные индексы для установки эксплуатационного минимума аэродрома. — movable bug is installed on altimeters to set airport minima prior to approach.
    - юза (толкатель на педали управления тормозом)foot thumper
    плунжер, выступающий из тормозной педали и толкающий ногу летчика при юзе колес шасси. — a plunger protruding from brake pedal to strike the pilot's shoe when wheel is skidding.
    - а рудthrottle position switch
    - а руд "max" — max throttle position switch
    - а руд "mг" — idle throttle position switch

    Русско-английский сборник авиационно-технических терминов > сигнализатор

  • 13 устройство


    device
    (агрегат, приспособление)
    - автоматического поиска записи программы (магнитофона)automatic program locate device (apld)
    - автоматическое навигационное — automatic navigation device the dr computer is a part of the automatic navigation device.
    - автоматическое навигационное(ану) — dead reckoning computer, dr computer (dr cmptr)
    входные параметры: путевая скорость, угол сноса и карты, ивс, скорость и направление ветра для определения места ла. — in its traditional form the dr computer uses the ground and airspeed data, drift angle, wind speed and direction.
    - автономное (автоматическое) навигационное (ану) — dead-reckoning computer, dr computer
    - автостабилизирующее (вертолета)automatic stabilization installation
    - алфавитно (-буквенно) цифровое печатающее (ацпу)alpha-numerical printer
    -, антенносогласующее (асу) — antenna coupler
    - арифметическое (ау)arithmetic unit
    -, арретирующее (арретир) — caging device
    -, блокирующее (блокировочное, для отключения и удержания в нерабочем положении оборудования при нарушении его нормальной работы) — lockout /locking-out/ device used to shut down ал@ hold an equipment out of service on occurrence of abnormal conditions.
    -, блокирующее — interlock
    устройство, включаемое срабатыванием другого устройства, находящимся с первым в прямой взаимосвязи, для управления данного или связанного с ним устройств, — а device actuated by operation of some other device with which it is directly associated, to govern succeeding operations of the same or allied devices.
    -, бортовое погрузочное (бпу) — (airborne) cargo handling device
    специальная каретка со стропами, перемещающаяся пo потолочным рельсам в грузовой кабине. — cargo handling device carriage moving along rails in cargo compartment.
    - ввода (в уст-ве ввода и индикации)insertion device
    - ввода/вывода (увв, для эвм) — input/output device (in-out device)

    transfer of data between the program and input/output devices.
    - ввода и индикации (уви инерциальной навигационной системы) — control display unit (c/du, cdu)
    - вентилятора (гтд), реверсивное — fan reverser
    -, весоизмерительное — balance (for weighing)
    -, взлетно-посадочное (шасси) — landing gear
    -, визуальное сигнальное (аварийной сигнализации) — visual warning device
    - внутрисамолетной связи для техобслуживания — ground service interphone system, ground crew interphone system
    -, входное (двиг.) — engine air inlet section

    it is directly attached to the front flange of the engine.
    - выдержки времени (реле)time delay relay
    -, выключающее (эл.) — tripping device
    механическое или электромагнитное ус-во для размыкания аэс. — а mechanical or electromagnetic device used for opening (turning off) a circuit breaker.
    -, выпрямительное (ву) — rectifier (rect)
    -, выпрямительное (трансформаторное) (ву) — transformer rectifier unit (tru)
    -, выхлопное (двиг.) — exhaust unit
    -, выходное (двиг. в реактивном сопле за турбиной) — exhaust unit
    -, вычислительное (ву) — computer (cmptr)
    -,вычислительное(системы ссос) — gpws computer
    -,вычислительное,директорное — steering computer command input signals are provided to the steering computer.
    -, вычислительное, канала крена (системы сау) — roll computer
    -, вычислительное, канала курса (сау) — yaw computer
    -, вычислительное, канала тангажа (сау) — pitch computer
    - горизонтирования (гироплатформы) — (platform) levelling unit /device/
    -, девиационное (магнит. компаса) (рис.80) — compass compensator
    -, декодирующее (дешифратор) — decoder
    устройство для декодирования кодовых сигналов. — a device for decoding а series of coded signals.
    -, демпфирующее — damper
    - для воспроизведения записи с магнитной лентыtape reproducer
    - для выдачи бумажных полотенецpaper towel dispenser
    - для выдачи бумажных салфеток для лица (напр., для удаления косметики) — facial tissue dispenser
    - для выдачи бумажных стаканчиковpaper cup dispenser
    - для выдачи гигиенических пакетовmotion sickness bag dispenser
    - для выдачи гигиенических салфетокsanitary napkin dispenser
    - для выдачи роликовой туалетной бумагиtoilet tissue roll paper dispenser
    - для записи речиvoice recorder
    устройство для записи переговоров членов экипажа. — that portion of the system used to record crew member conversation.
    - для контейнерной загрузки (ла)unit load device (uld)
    - для определения отношения давлений (тяги) двигателя, вычислительное — engine pressure ratio computer used to determine engine rating for all modes of operation.
    - для предотвращений возникновения земного резонанса (вертолета)ground resonance prevention device
    - для тарировки высотомера (см. устройство, тарировочное) — altimeter calibrator
    - для тарировки указателя воздушной скорости (см. устройство, тарировочное) — airspeed calibrator
    - для увеличения подъемной силыhigh-lift device
    - для форсирования тягиthrust augmentor
    - для хранения и выдачи полотенец (в туалете)towel dispenser
    - для хранения и выдачи салфетокnapkin dispenser
    -, дозирующее — metering device
    -, дозирующее (насоса-регулятора двигателя) — throttle valve
    -, долговременное запоминающее (дзу) (постоянной информации) — permanent data storage unit (pdsu)
    -, загрузочное (в системе управления ла) — load feel unit
    -, задерживающее посадочное — arrester gear
    -, запальное — igniter
    устройство, непосредственно служащее для зажигания топлива (горючей смеси) в камере сгорания. — a device used to ignite fuel/air mixture in combustion chamber.
    -, запоминающее — storage /unit/, memory
    -, запоминающее ("блок памяти") — data storage unit (dsu) used to store information.
    -, запоминающее (блок памяти параметров полета) — flight data storage unit (fdsu)
    -, запоминающее ("память" доплеровского измерителя путевой скорости и сноса) — doppler memory (unit)
    в случае отсутствия подачи сигналов, запоминающее устройство фиксирует последние замеры путевой скорости и сноса ла для выдачи их на индикацию. — under conditions of signal loss, the ground speed and drift indication last measured will continue to be displayed indefinitely.
    -, запорно-редуцирующее — shut-off/pressure reducing valve
    -, защитное (в агрегате, системе) — protection /protective/ device
    -, защитное (снаряжение) — protective device
    защитные очки, маски, резиновые перчатки. — use protective devices, such as goggles, face masks, and rubber gloves.
    - защитное, катапультного кресла — ejection seat guard
    - защиты (эл. сети) — circuit protection device
    - защиты (эл. цепи) от повыщенного (или пониженного) напряжения — overvoltage (or undervoltage) protection device
    - защиты (эл. цепи) от пониженной (или повышенной) частоты — underfrequency (or overfrequency) protection device
    - защиты (эл.) сети, повторного включения — resettable circuit protective /protection/ device
    устройство должно размыкать цепь независимо от положения органов управления (выключателей, переключателей) при перегрузке и неисправности данной цепи. — each resettable circuit protective device must be designed so that, when an overload or circuit fault exists, it will open the circuit regardless of the position of the operating control.
    -, звуковое сигнальное (аварийной сигнализации) — audio warning device
    -, имитирующие — simulator
    устройство, имитирующее систему или явление. — а device which represents а system ог phenomenon.
    - индикации выставки (навигационной системы) — align display unit (adu) panel set mode selector of the adu panel to trim lat, trim long, align nav.
    - индикации и сигнализации углов атаки и перегрузок — angle-of-attack and acceleration indicating/warding system
    -, инициирующее (вызывающее срабатывание пиромеханизмов) — initiator
    - и работа (раздел ртэ)construction and operation
    -, кодирующее (шифратор) — coder
    -, коммутационное — switching device, switch gear
    электрическое или механическое устройство, служащее дпя включения и/или выключения цепи (системы), — any device or mechanism, either electrical or mechanical, which can place another device or circuit in an operating or nonoperating state.
    -, коммутационное (соединительная или распределительная коробка) — junction box (jb)
    -, коммутирующее (ук, плата для размещения радиоэлементов напр., диодов, резисторов и т.п.) — circuit board
    - контроляmonitor
    -, контрольно-записывающее (типа кз для регистрации высоты, скорости, перегрузки) — altitude, airspeed and acceleration recorder, height-velocity-g recorder (hvg rcdr)
    -, коррекционное (гироскопического прибора) — erection mechanism
    -, ламельное (для приведения штока рулевого агрегата автопилота при выключенных режимах) — switching (contact) device
    -, лекальное (коррекционного механизма) — cam strip
    -, множительное (ум) — multiplier
    -, моделирующее — simulator
    -, монтажное (амортизированная рама, платформа) — shockmount
    -, наборное (частоты арм) — band selector switch
    -, навигационно-вычислительное (нву, навигационный координатор) состав: пу, задатчики зпу и угла карты, планшет, задатчик ветра. — dead-reckoning navigation system (drns) system incorporates: control panel, dtk and chart angle selectors, roller map and wind selector.
    -, навигационное вычислительнoe (доплеровского оборудования) (рис.82) — (doppler) navigation computer the doppler navigator provides outputs of velocity along and across heading to a navigation computer.
    -, навигационное вычислительное, цифроаналоговое — navigation analog-digital computer
    - навигационное, координаторное (типа ану, нву) — dead reckoning navigation system (drns)
    - натяга (ножного) привязного ремня (на катапультном кресле) — (lap) strap /belt/ retractor
    -, обеспечивающее плавучесть сухопутного самолета при аварийной посадке на воду. — flotation gear an emergency gear attached to а landplane to permit alighting on the water, and to provide buoyancy when resting on the surface of the water.
    - обменаexchange device
    -, оперативное запоминающее (озу) (переменной информации) — random-access memory (ram), working (data) storage unit (wdsu)
    - определения аэродинамических поправок (к показаниям указателя скорости, высотомеров) (уоап) — position error correction (determination) device
    -, осветительное (лампа) — light
    - пеленгаторноеdirection finder
    - первого каскада компрессоpa, входное — lp compressor air inlet section
    -, переходное (переходник) — adapter
    -, переходное (наружной подвески - для крепления к пилону) — store adapter shoe
    -, переходное (соединяющее двигатель с удлинительной трубой или трубу с соплом) — transition section
    -, погрузочно-разгрузочное — cargo handling device
    -, подпорное (в гидравлической системе) — intensifier
    - полупроводниковое.-, постоянное запоминяющее (пзу) — semiconductor device read-only memory (rom), permanent storage unit

    computer storage device which retains the stored data indefinitely.
    -, постоянное запоминающее (внешнее) — permanent storage (unit)
    - предотвращающее перекладку рычага управления шасси в убранное положение на земле — landing gear control lever antiretraction device
    -, предохранительное — safety device
    -, предохранительное (напр., колпачок на выключателе) — guard check switch guard down and safetied.
    - предупредительной тряски штурвала при приближении к критическому углу атаки — stick shaker turn off stall warn switch if alpha off light is illuminated to prevent stick shaker action resulting from a false stall warning due to alpha probe icing.
    -, преобразующее (в системе мсрп) — converter
    - приемопеленгаторноеdirection-finder receiver
    -, приемопеленгаторное (арк) — direction finder
    -, программное (временное) — timer
    -, противообледенительное — anti-icer, de-icer
    -, противообледенительное воздушно-тепловое — hot air anti-icer
    -, противоюзовое — anti-skid device
    -, пусковое (pc или cc) — missile launcher
    -, пылезащитное (пзу, на воздухозаборник двигателя вертолета) — dust protection device (dust prot)
    -, развязывающее (эл.) — decoupler
    -, раздаточное (см. устройство для выдачи) — dispenser
    -, распределительное — distributor
    -, распределительное (эл. сети) — distribution panel (р)
    -, распределительное (распределительная коробка зл. сети) — junction box (jb)
    -, распределительное (панель азс) (напр. ру25) — circuit breaker panel, св panel, (св pnl, р) (р25)
    - распределительное (эл. шина) — bus
    -, распределительное (положение переключателя ру (шин), напр. ру1,ру2 и т.д.) — bus (1, 2) the bus selector switch is set in bus 1 position.
    -, распределительное (ру, распределительная шина) (рис.91) — distribution bus
    шина, запитываемая от питательной магистрали для дальнейшего распределения электропитания по фидерам и цепям. — а conductor connected to the (supply) mains from which electric power is taken to circuits and/or feeders.
    -, распределительное переменного тока (панель азс) — ac power circuit breaker panel
    -, распределительное постоянного тока (панель азс) — dc power circuit breaker panel
    -, распределительное хвостового (хру) (панель азс) — tail circuit breaker panel
    -, распределительное центральное (цру, панель азс) — main circuit breaker panel, main св panel
    -, распределительное центральное (цру, коробка) — main junction box (mjb)
    -, распределительное, центральное (цру, шина) — main distribution bus
    -, реверсивное (двигателя) — thrust reverser
    устройство для изменения направления тяги двигателя на обратно (рис.53). — a device for redirecting the engine exhaust to an opposite direction.
    -, реверсивное, включено — thrust reverser deployed (reverser dplyd, rvsr dpld)
    при включенном ру продолжать полет на пониженной скорости. — if reverser is deployed, continue (flying) at reduced speed.
    -, реверсивное выключено — thrust reverser stowed (reverser stwd, rvsr stwd)
    при невозможности выключения ру необходимо как можно скорее совершить посадку. — if reverser cannot be stowed, land as soon as practical.
    -, реверсивно-тормозное (рту) комбинация створок реверса тяги и тормозных щитков. — thrust/air brakes
    - реверсирования тяги, основное — primary thrust reverser
    - регистрации, бортовое — (flight data) recorder
    - регистрации звуковой информации в кабине экипажаcockpit voice recorder (cvr)
    - регистрации высоты прибop для записи (изменений) высоты по времени полета. — altitude /height/ recorder an instrument by which variation in height is recorded against time.
    -, регулировочное — adjusting device, adjuster
    -, рулежно-демпфирующее (передней опоры шасси) — nosewheel steering/damping control valve (and follow-up assembly)
    - самоконтроля (встроенное) — (built-in, integral) self-test feature
    -, самолетное громкоговорящее (сгу) — passenger /public/ address system (pa)
    сгу предназначено для оповещения пассажиров через громкоговорители. — used to make voice announcements to the passengers over cabin loud speakers.
    -, самолетное переговорное (спу) — interphone system int, intph, intercommunication system (ics, intcom)
    оборудование, обеспечивающее связь между членами экипажа внутри самолета и с техническим персоналом на земле. — that portion of the system which is used by flight and ground personnel to communicate between areas on the aircraft.
    -, самолетное переговорное вспомогательное для связи с бортпроводниками и наземным обслуживающим персоналом. — service interphone system
    - самолетное переговорное громкоговорящее (спгу = сгу + спу) — interphone /intercom/ and passenger /public/ address system (int/pa)
    для связи между членами экипажа и обращения к пассажирам через громкоговорители. — used by the crew members to communicate, and to address the passengers over cabin loud speakers.
    - сброса (показаний прибора)(instrument reading) reset knob
    -, светотехническое (арматура) — light
    - связи (в ацбс) — coupler, coupling device
    -, сигнальное (для подачи сигнала бедствия в случае аварийной посадки) — long-range signaling device
    - смотровое, оптическое — optical viewer
    наблюдение за механическим указателем положения шасси осуществляется посредством смотрового оптического устройства. — the nose gear (mechanical) indicators can be seen through an optical viewer in aft bulkhead.
    -, согласующее (системы регистрации параметров полета) — signal conditioning unit
    -, сопрягающее/сопряжения / (блоков, систем) — interface
    -, сравнивающее (блок сравнения данных) — comparator
    ус-тва и цепь для сравнения информации, поступающей из двух источников. — a device (in computer operations) or circuit for comparing information from two sources.
    -, стопорное (арретирующее) — caging device
    -, стопорное (фиксатор) — lock, latch
    - счисления пути, вычислительное — dead-reckoning computer dr computer outputs are latitude and longitude.
    -, тарировочное (калибратор) — calibrator
    - тарировочное (высотомера)altimeter calibrator
    устройство для определения инструментальной погрешности высотомера. — an apparatus for measuring the instrument errors of an altimeter.
    -, тарировочное (указателя воздушной скорости) — airspeed calibrator an apparatus for measuring the instrument errors of an airspeed indicator.
    -, термокомпенсационное (напр., трубопровода) — thermal compensator
    -, тормозное (тормоз) — brake
    -, тормозное (специальное) к спец. тормозным устройствам относятся: устройства реверсирования тяги, возд. тормоза, спойлеры, реверсивные возд. винты. — deceleration device special deceleration (or retardation) devices include thrust reversers, air brakes, spoilers, ground fine and reverse pitch propellers.
    -, трансформаторно-выпрямительное (ву) — transformer-rectifier unit (tr, t/r, tru, xfmr-rect)
    - управляющее вычислительное (системы автоматического управления ла)steering computer
    - усилительно-выпрямительное (уву)transformer rectifier unit (tru)
    -, форсажное (форсажная камера) — afterburner
    -, форсажное (пд) — augmentor
    выхлопная система пд включает форсажное устройство. — exhaust system for reciproсating engines includes augmentors.
    -, фронтовое, двигателя (между двигателем и удлинительной трубой) — jet pipe transition section
    -, фронтовое, реактивного сопла (между удлинительной трубой и pc) — jet /propelling/ nozzle transition section
    -, центральное распределительное (панель) — main distribution panel
    -, центральное, распределительное (цру, коробка эл. сети) — main junction box (mjb)
    -, центральное распределительное (цру, шина) — main distribution bus
    шина между источником питания и распределительными шинами (рис.91). — a conductor connected between а generating source and distribution busses.
    -, центральное, распределительное (центральный распределительный энергоузел) — main distribution center wires extending from а generator bus to the main distribution center.
    -, цифровое вычислительное — digital computer
    вычислительное ус-во обрабатывающее и выдающее информацию в цифровой форме. — a computer which operates with information represented in а digital form.
    - часового типа (таймер) — timer, clockwork timing device
    -, электромагнитное стопорное (рулевого агрегата автопилота) — solenoid brake
    -, электромеханическое — electromechanical device
    гироскоп является точным электромеханическим устройством. — a gyroscope is а delicate electromechanical device.
    выполнять свою функцию (о защитном у.) — serve its purpose
    срабатывать (о защитном у.) — operate, become actuated, come into action

    Русско-английский сборник авиационно-технических терминов > устройство

  • 14 широковещательное объектно-ориентированное сообщение о событии на подстанции

    1. GOOSE
    2. generic object oriented substation event

     

    GOOSE-сообщение
    -

    [Интент]

    широковещательное объектно-ориентированное сообщение о событии на подстанции

    Широковещательный высокоскоростной внеочередной отчет, содержащий статус каждого из входов, устройств пуска, элементов выхода и реле, реальных и виртуальных.
    Примечание. Этот отчет выдается многократно последовательно, как правило, сразу после первого отчета с интервалами 2, 4, 8,…, 60000 мс. Значение задержки первого повторения является конфигурируемым. Такой отчет обеспечивает выдачу высокоскоростных сигналов отключения с высокой вероятностью доставки.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    общие объектно-ориентированные события на подстанции
    -
    [ ГОСТ Р МЭК 61850-7-2-2009]

    GOOSE
    Generic Object Oriented Substation Event
    (стандарт МЭК 61850-8-1)
    Протокол передачи данных о событиях на подстанции.
    Один из трех протоколов передачи данных, предлагаемых к использованию в МЭК 61850.
    Фактически данный протокол служит для замены медных кабельных связей, предназначенных для передачи дискретных сигналов между устройствами.
    [ Цифровые подстанции. Проблемы внедрения устройств РЗА]

    EN

    generic object oriented substation event
    on the occurrence of any change of state, an IED will multicast a high speed, binary object, Generic Object Oriented Substation Event (GOOSE) report by exception, typically containing the double command state of each of its status inputs, starters, output elements and relays, actual and virtual.

    This report is re-issued sequentially, typically after the first report, again at intervals of 2, 4, 8…60000 ms. (The first repetition delay value is an open value it may be either shorter or longer).

    A GOOSE report enables high speed trip signals to be issued with a high probability of delivery
    [IEC 61850-2, ed. 1.0 (2003-08)]

    До недавнего времени для передачи дискретных сигналов между терминалами релейной защиты и автоматики (РЗА) использовались дискретные входы и выходные реле. Передача сигнала при этом осуществляется подачей оперативного напряжения посредством замыкания выходного реле одного терминала на дискретный вход другого терминала (далее такой способ передачи будем называть традиционным).
    Такой способ передачи информации имеет следующие недостатки:

    • необходимо большое количество контрольных кабелей, проложенных между шкафами РЗА,
    • терминалы РЗА должны иметь большое количество дискретных входов и выходных реле,
    • количество передаваемых сигналов ограничивается определенным количеством дискретных входов и выходных реле,
    • отсутствие контроля связи между терминалами РЗА,
    • возможность ложного срабатывания дискретного входа при замыкании на землю в цепи передачи сигнала.

    Информационные технологии уже давно предоставляли возможность для передачи информации между микропроцессорными терминалами по цифровой сети. Разработанный недавно стандарт МЭК 61850 предоставил такую возможность для передачи сигналов между терминалами РЗА.
    Стандарт МЭК 61850 использует для передачи данных сеть Ethernet. Внутри стандарта МЭК 61850 предусмотрен такой механизм, как GOOSE-сообщения, которые и используются для передачи сообщений между терминалами РЗА.
    Принцип передачи GOOSE-сообщений показан на рис. 1.

    5683

    Устройство-отправитель передает по сети Ethernet информацию в широковещательном диапазоне.
    В сообщении присутствует адрес отправителя и адреса, по которым осуществляется его передача, а также значение сигнала (например «0» или «1»).
    Устройство-получатель получит сообщение, а все остальные устройства его проигнорируют.
    Поскольку передача GOOSE-сообщений осуществляется в широковещательном диапазоне, т.е. нескольким адресатам, подтверждение факта получения адресатами сообщения отсутствует. По этой причине передача GOOSE-сообщений в установившемся режиме производится с определенной периодичностью.
    При наступлении нового события в системе (например, КЗ и, как следствие, пуска измерительных органов защиты) начинается спонтанная передача сообщения через увеличивающиеся интервалы времени (например, 1 мс, 2 мс, 4 мс и т.д.). Интервалы времени между передаваемыми сообщениями увеличиваются, пока не будет достигнуто предельное значение, определяемое пользователем (например, 50 мс). Далее, до момента наступления нового события в системе, передача будет осуществляется именно с таким периодом. Указанное проиллюстрировано на рис. 2.

    5684

    Технология повторной передачи не только гарантирует получение адресатом сообщения, но также обеспечивает контроль исправности линии связи и устройств – любые неисправности будут обнаружены по истечении максимального периода передачи GOOSE-сообщений (с точки зрения эксплуатации практически мгновенно). В случае передачи сигналов традиционным образом неисправность выявляется либо в процессе плановой проверки устройств, либо в случае неправильной работы системы РЗА.

    Еще одной особенностью передачи GOOSE-сообщений является использование функций установки приоритетности передачи телеграмм (priority tagging) стандарта Ethernet IEEE 802.3u, которые не используются в других протоколах, в том числе уровня TCP/IP. То есть GOOSE-сообщения идут в обход «нормальных» телеграмм с более высоким приоритетом (см. рис. 3).

    5685


    Однако стандарт МЭК 61850 декларирует передачу не только дискретной информации между терминалами РЗА, но и аналоговой. Это означает, что в будущем будет иметься возможность передачи аналоговой информации от ТТ и ТН по цифровым каналам связи. На данный момент готовых решений по передаче аналоговой информации для целей РЗА (в рамках стандарта МЭК 61850) ни один из производителей не предоставляет.
    Для того чтобы использовать GOOSE-сообщения для передачи дискретных сигналов между терминалами РЗА необходима достаточная надежность и быстродействие передачи GOOSE-сообщений. Надежность передачи GOOSE-сообщений обеспечивается следующим:

    • Протокол МЭК 61850 использует Ethernet-сеть, за счет этого выход из строя верхнего уровня АСУ ТП и любого из устройств РЗА не отражается на передаче GOOSE-сообщений оставшихся в работе устройств,
    • Терминалы РЗА имеют два независимых Ethernet-порта, при выходе одного из них из строя второй его полностью заменяет,
    • Сетевые коммутаторы, к которым подключаются устройства РЗА, соединяются в два независимых «кольца»,
    • Разные порты одного терминала РЗА подключаются к разным сетевым коммутаторам, подключенным к разным «кольцам»,
    • Каждый сетевой коммутатор имеет дублированное питание от разных источников,
    • Во всех устройствах РЗА осуществляется постоянный контроль возможности прохождения каждого сигнала. Это позволяет автоматически определить не только отказы цифровой связи, но и ошибки параметрирования терминалов.

    5686

    На рис. 4 изображен пример структурной схемы сети Ethernet (100 Мбит/c) подстанции. Отказ в передаче GOOSE-сообщения от одного устройства защиты другому возможен в результате совпадения как минимум двух событий. Например, одновременный отказ двух коммутаторов, к которым подключено одно устройство или одновременный отказ обоих портов одного устройства. Могут быть и более сложные отказы, связанные с одновременным наложением большего количества событий. Таким образом, единичные отказы оборудования не могут привести к отказу передачи GOOSEсообщений. Дополнительно увеличивает надежность то обстоятельство, что даже в случае отказа в передаче GOOSE-сообщения, устройство, принимающее сигнал, выдаст сигнал неисправности, и персонал примет необходимые меры для ее устранения.

    Быстродействие.
    В соответствии с требованиями стандарта МЭК 61850 передача GOOSE-сообщений должна осуществляться со временем не более 4 мс (для сообщений, требующих быстрой передачи, например, для передачи сигналов срабатывания защит, пусков АПВ и УРОВ и т.п.). Вообще говоря, время передачи зависит от топологии сети, количества устройств в ней, загрузки сети и загрузки вычислительных ресурсов терминалов РЗА, версии операционной системы терминала, коммуникационного модуля, типа центрального процессора терминала, количества коммутаторов и некоторых других аспектов. Поэтому время передачи GOOSE-сообщений должно быть подтверждено опытом эксплуатации.
    Используя для передачи дискретных сигналов GOOSE-сообщения необходимо обращать внимание на то обстоятельство, что при использовании аппаратуры некоторых производителей, в случае отказа линии связи, значение передаваемого сигнала может оставаться таким, каким оно было получено в момент приема последнего сообщения.
    Однако при отказе связи бывают случаи, когда сигнал должен принимать определенное значение. Например, значение сигнала блокировки МТЗ ввода 6–10 кВ в логике ЛЗШ при отказе связи целесообразно установить в значение «1», чтобы при КЗ на отходящем присоединении не произошло ложного отключения ввода. Так, к примеру, при проектировании терминалов фирмы Siemens изменить значение сигнала при отказе связи возможно с помощью свободно-программируемой CFCлогики (см. рис. 5).

    5687

    К CFC-блоку SI_GET_STATUS подводится принимаемый сигнал, на выходе блока мы можем получить значение сигнала «Value» и его статус «NV». Если в течение определенного времени не поступит сообщение со значением сигнала, статус сигнала «NV» примет значение «1». Далее статус сигнала и значение сигнала подводятся к элементу «ИЛИ», на выходе которого будет получено значение сигнала при исправности линии связи или «1» при нарушении исправности линии связи. Изменив логику, можно установить значение сигнала равным «0» при обрыве связи.
    Использование GOOSE-сообщений предъявляет специальные требования к наладке и эксплуатации устройств РЗА. Во многом процесс наладки становится проще, однако при выводе устройства из работы необходимо следить не только за выводом традиционных цепей, но и не забывать отключать передачу GOOSE-сообщений.
    При изменении параметрирования одного устройства РЗА необходимо производить загрузку файла параметров во все устройства, с которыми оно было связано.
    В нашей стране имеется опыт внедрения и эксплуатации систем РЗА с передачей дискретных сигналов с использованием GOOSE-сообщений. На первых объектах GOOSE-сообщения использовались ограниченно (ПС 500 кВ «Алюминиевая»).
    На ПС 500 кВ «Воронежская» GOOSEсообщения использовались для передачи сигналов пуска УРОВ, пуска АПВ, запрета АПВ, действия УРОВ на отключение смежного элемента, положения коммутационных аппаратов, наличия/отсутствия напряжения, сигналы ЛЗШ, АВР и т.п. Кроме того, на ОРУ 500 кВ и 110 кВ ПС «Воронежская» были установлены полевые терминалы, в которые собиралась информация с коммутационного оборудования и другая дискретная информация с ОРУ (рис. 6). Далее информация с помощью GOOSE-сообщений передавалась в терминалы РЗА, установленные в ОПУ подстанции (рис. 7, 8).
    GOOSE-сообщения также были использованы при проектировании уже введенных в эксплуатацию ПС 500 кВ «Бескудниково», ПС 750 кВ «Белый Раст», ПС 330кВ «Княжегубская», ПС 220 кВ «Образцово», ПС 330 кВ «Ржевская». Эта технология применяется и при проектировании строящихся и модернизируемых подстанций ПС 500 кВ «Чагино», ПС 330кВ «Восточная», ПС 330 кВ «Южная», ПС 330 кВ «Центральная», ПС
    330 кВ «Завод Ильич» и многих других.
    Основные преимущества использования GOOSE-сообщений:

    • позволяет снизить количество кабелей вторичной коммутации на ПС;
    • обеспечивает лучшую помехозащищенность канала связи;
    • позволяет снизить время монтажных и пусконаладочных работ;
    • исключает проблему излишнего срабатывания дискретных входов терминалов из-за замыканий на землю в цепях оперативного постоянного тока;
    • убирает зависимость количества передаваемых сигналов от количества дискретных входов и выходных реле терминалов;
    • обеспечивает возможность реконструкции и изменения связей между устройствами РЗА без прокладки дополнительных кабельных связей и повторного монтажа в шкафах;
    • позволяет использовать МП терминалы РЗА с меньшим количеством входов и выходов (уменьшение габаритов и стоимости устройства);
    • позволяет контролировать возможность прохождения сигнала (увеличивается надежность).

    Безусловно, для окончательных выводов должен появиться достаточный опыт эксплуатации. В настоящее время большинство производителей устройств РЗА заявили о возможности использования GOOSEсообщений. Стандарт МЭК 61850 определяет передачу GOOSE-сообщений между терминалами разных производителей. Использование GOOSE-сообщений для передачи дискретных сигналов – это качественный скачок в развитии систем РЗА. С развитием стандарта МЭК 61850, переходом на Ethernet 1 Гбит/сек, с появлением новых цифровых ТТ и ТН, новых выключателей с возможностью подключения их блока управления к шине процесса МЭК 61850, эффективность использования GOOSE-сообщений намного увеличится. Облик будущих подстанций представляется с минимальным количеством контрольных кабелей, с передачей всех сообщений между устройствами РЗА, ТТ, ТН, коммутационными аппаратами через цифровую сеть. Устройства РЗА будут иметь минимальное количество выходных реле и дискретных входов

    [ http://romvchvlcomm.pbworks.com/f/goosepaper1.pdf]


    В стандарте определены два способа передачи данных напрямую между устройствами: GOOSE и GSSE. Это тоже пример наличия двух способов для реализации одной функции. GOOSE - более новый способ передачи сообщений, разработан специально для МЭК 61850. Способ передачи сообщений GSSE ранее присутствовал в стандарте UCA 2.0, являющимся одним из предшественников МЭК 61850. По сравнению с GSSE, GOOSE имеет более простой формат (Ethernet против стека OSI протоколов) и возможность передачи различных типов данных. Вероятно, способ GSSE включили в МЭК 61850 для того, чтобы производители, имеющие в своих устройствах протокол UCA 2.0, могли сразу декларировать соответствие МЭК 61850. В настоящее время все производители используют только GOOSE для передачи сообщений между устройствами.
    Для выбора списка передаваемых данных в GOOSE, как и в отчѐтах, используются наборы данных. Однако тут требования уже другие. Время обработки GOOSE-сообщений должно быть минимальным, поэтому логично передавать наиболее простые типы данных. Обычно передаѐтся само значение сигнала и в некоторых случаях добавляется поле качества. Метка времени обычно включается в набор данных.
    ...
    В устройствах серии БЭ2704 в передаваемых GOOSE-сообщениях содержатся данные типа boolean. Приниматься могут данные типа boolean, dbpos, integer.
    Устоявшаяся тенденция существует только для передачи дискретной информации. Аналоговые данные пока передают немногие производители, и поэтому устоявшаяся тенденция в передаче аналоговой информации в данный момент отсутствует.
    [ Источник]


     

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > широковещательное объектно-ориентированное сообщение о событии на подстанции

  • 15 автоматическое повторное включение

    1. reclosure
    2. reclosing
    3. reclose
    4. autoreclosure
    5. autoreclosing
    6. automatic recluse
    7. automatic reclosing
    8. auto-reclosing
    9. ARC
    10. AR

     

    автоматическое повторное включение
    АПВ

    Коммутационный цикл, при котором выключатель вслед за его отключением автоматически включается через установленный промежуток времени (О - tбт - В).
    [ ГОСТ Р 52565-2006]

    автоматическое повторное включение
    АПВ

    Автоматическое включение аварийно отключившегося элемента электрической сети
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    (автоматическое) повторное включение
    АПВ


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    EN

    automatic reclosing
    automatic reclosing of a circuit-breaker associated with a faulted section of a network after an interval of time which permits that section to recover from a transient fault
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    auto-reclosing
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEC 62271-100, ed. 2.0 (2008-04)]
    auto-reclosing (of a mechanical switching device)
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEV number 441-16-10]

    FR

    réenclenchement automatique
    refermeture du disjoncteur associé à une fraction de réseau affectée d'un défaut, par un dispositif automatique après un intervalle de temps permettant la disparition d'un défaut fugitif
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    refermeture automatique
    séquence de manoeuvres par laquelle, à la suite d’une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEC 62271-100, ed. 2.0 (2008-04)]
    refermeture automatique (d'un appareil mécanique de connexion)
    séquence de manoeuvres par laquelle, à la suite d'une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEV number 441-16-10]

     
    Автоматическое повторное включение (АПВ), быстрое автоматическое обратное включение в работу высоковольтных линий электропередачи и электрооборудования высокого напряжения после их автоматического отключения; одно из наиболее эффективных средств противоаварийной автоматики. Повышает надёжность электроснабжения потребителей и восстанавливает нормальный режим работы электрической системы. Во многих случаях после быстрого отключения участка электрической системы, на котором возникло короткое замыкание в результате кратковременного нарушения изоляции или пробоя воздушного промежутка, при последующей подаче напряжения повторное короткое замыкание не возникает.   АПВ выполняется с помощью автоматических устройств, воздействующих на высоковольтные выключатели после их аварийного автоматического отключения от релейной защиты. Многие из этих автоматических устройств обеспечивают АПВ при самопроизвольном отключении выключателей, например при сильных сотрясениях почвы во время близких взрывов, землетрясениях и т. п. Эффективность АПВ тем выше, чем быстрее следует оно за аварийным отключением, т. е. чем меньше время перерыва питания потребителей. Это время зависит от длительности цикла АПВ. В электрических системах применяют однократное АПВ — с одним циклом, двукратное — при неуспешном первом цикле, и трёхкратное — с тремя последовательными циклами. Цикл АПВ — время от момента подачи сигнала на отключение до замыкания цепи главными контактами выключателя — состоит из времени отключения и включения выключателя и времени срабатывания устройства АПВ. Длительность бестоковой паузы, когда потребитель не получает электроэнергию, выбирается такой, чтобы успело произойти восстановление изоляции (деионизация среды) в месте короткого замыкания, привод выключателя после отключения был бы готов к повторному включению, а выключатель к моменту замыкания его главных контактов восстановил способность к отключению поврежденной цепи в случае неуспешного АПВ. Время деионизации зависит от среды, климатических условий и других факторов. Время восстановления отключающей способности выключателя определяется его конструкцией и количеством циклов АПВ., предшествовавших данному. Обычно длительность 1-го цикла не превышает 0,5—1,5 сек, 2-го — от 10 до 15 сек, 3-го — от 60 до 120 сек.

    Наиболее распространено однократное АПВ, обеспечивающее на воздушных линиях высокого напряжения (110 кв и выше) до 86 %, а на кабельных линиях (3—10 кв) — до 55 % успешных включений. Двукратное АПВ обеспечивает во втором цикле до 15 % успешных включений. Третий цикл увеличивает число успешных включений всего на 3—5 %. На линиях электропередачи высокого напряжения (от 110 до 500 кВ) применяется однофазовое АПВ; при этом выключатели должны иметь отдельные приводы на каждой фазе.

    Применение АПВ экономически выгодно, т. к. стоимость устройств АПВ и их эксплуатации несравнимо меньше ущерба из-за перерыва в подаче электроэнергии.
    [ БСЭ]

     

    НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ АПВ

    Опыт эксплуатации сетей высокого напряжения показал, что если поврежденную линию электропередачи быстро отключить, т. е. снять с нее напряжение, то в большинстве случаев повреждение ликвидируется. При этом электрическая дуга, возникавшая в месте короткого замыкания (КЗ), не успевает вызвать существенных разрушений оборудования, препятствующих обратному включению линии под напряжение.
    Самоустраняющиеся повреждения принято называть неустойчивыми. Такие повреждения возникают в результате грозовых перекрытий изоляции, схлестывания проводов при ветре и сбрасывании гололеда, падения деревьев, задевания проводов движущимися механизмами.
    Данные о повреждаемости воздушных линий электропередачи (ВЛ) за многолетний период эксплуатации показывают, что доля неустойчивых повреждений весьма высока и составляет 50—90 %.
    При ликвидации аварии оперативный персонал производит обычно опробование линии путем включения ее под напряжение, так как отыскание места повреждения на линии электропередачи путем ее обхода требует длительного времени, а многие повреждения носят неустойчивый характер. Эту операцию называют повторным включением.
    Если КЗ самоустранилось, то линия, на которой произошло неустойчивое повреждение, при повторном включении остается в работе. Поэтому повторные включения при неустойчивых повреждениях принято называть успешными.
    На ВЛ успешность повторного включения сильно зависит от номинального напряжения линий. На линиях ПО кВ и выше успешность повторного включения значительно выше, чем на ВЛ 6—35 кВ. Высокий процент успешных повторных включений в сетях высокого и сверхвысокого напряжения объясняется быстродействием релейной защиты (как правило, не более 0,1-0,15 с), большим сечением проводов и расстояний между ними, высокой механической прочностью опор. [Овчинников В. В., Автоматическое повторное включение. — М.:Энергоатомиздат, 1986.— 96 с: ил. — (Б-ка электромонтера; Вып. 587). Энергоатомиздат, 1986]

    АВТОМАТИЧЕСКОЕ ПОВТОРНОЕ ВКЛЮЧЕНИЕ (АПВ)

    3.3.2. Устройства АПВ должны предусматриваться для быстрого восстановления питания потребителей или межсистемных и внутрисистемных связей путем автоматического включения выключателей, отключенных устройствами релейной защиты.

    Должно предусматриваться автоматическое повторное включение:

    1) воздушных и смешанных (кабельно-воздушных) линий всех типов напряжением выше 1 кВ. Отказ от применения АПВ должен быть в каждом отдельном случае обоснован. На кабельных линиях 35 кВ и ниже АПВ рекомендуется применять в случаях, когда оно может быть эффективным в связи со значительной вероятностью повреждений с образованием открытой дуги (например, наличие нескольких промежуточных сборок, питание по одной линии нескольких подстанций), а также с целью исправления неселективного действия защиты. Вопрос о применении АПВ на кабельных линиях 110 кВ и выше должен решаться при проектировании в каждом отдельном случае с учетом конкретных условий;

    2) шин электростанций и подстанций (см. 3.3.24 и 3.3.25);

    3) трансформаторов (см. 3.3.26);

    4) ответственных электродвигателей, отключаемых для обеспечения самозапуска других электродвигателей (см. 3.3.38).

    Для осуществления АПВ по п. 1-3 должны также предусматриваться устройства АПВ на обходных, шиносоединительных и секционных выключателях.

    Допускается в целях экономии аппаратуры выполнение устройства группового АПВ на линиях, в первую очередь кабельных, и других присоединениях 6-10 кВ. При этом следует учитывать недостатки устройства группового АПВ, например возможность отказа в случае, если после отключения выключателя одного из присоединений отключение выключателя другого присоединения происходит до возврата устройства АПВ в исходное положение.

    3.3.3. Устройства АПВ должны быть выполнены так, чтобы они не действовали при:

    1) отключении выключателя персоналом дистанционно или при помощи телеуправления;

    2) автоматическом отключении от релейной защиты непосредственно после включения персоналом дистанционно или при помощи телеуправления;

    3) отключении выключателя защитой от внутренних повреждений трансформаторов и вращающихся машин, устройствами противоаварийной автоматики, а также в других случаях отключений выключателя, когда действие АПВ недопустимо. АПВ после действия АЧР (ЧАПВ) должно выполняться в соответствии с 3.3.81.

    Устройства АПВ должны быть выполнены так, чтобы была исключена возможностью многократного включения на КЗ при любой неисправности в схеме устройства.

    Устройства АПВ должны выполняться с автоматическим возвратом.

    3.3.4. При применении АПВ должно, как правило, предусматриваться ускорение действия релейной защиты на случай неуспешного АПВ. Ускорение действия релейной защиты после неуспешного АПВ выполняется с помощью устройства ускорения после включения выключателя, которое, как правило, должно использоваться и при включении выключателя по другим причинам (от ключа управления, телеуправления или устройства АВР). При ускорении защиты после включения выключателя должны быть приняты меры против возможного отключения выключателя защитой под действием толчка тока при включении из-за неодновременного включения фаз выключателя.

    Не следует ускорять защиты после включения выключателя, когда линия уже включена под напряжение другим своим выключателем (т. е. при наличии симметричного напряжения на линии).

    Допускается не ускорять после АПВ действие защит линий 35 кВ и ниже, выполненных на переменном оперативном токе, если для этого требуется значительное усложнение защит и время их действия при металлическом КЗ вблизи места установки не превосходит 1,5 с.

    3.3.5. Устройства трехфазного АПВ (ТАПВ) должны осуществляться преимущественно с пуском при несоответствии между ранее поданной оперативной командой и отключенным положением выключателя; допускается также пуск устройства АПВ от защиты.

    3.3.6. Могут применяться, как правило, устройства ТАПВ однократного или двукратного действия (последнее - если это допустимо по условиям работы выключателя). Устройство ТАПВ двукратного действия рекомендуется принимать для воздушных линий, в особенности для одиночных с односторонним питанием. В сетях 35 кВ и ниже устройства ТАПВ двукратного действия рекомендуется применять в первую очередь для линий, не имеющих резервирования по сети.

    В сетях с изолированной или компенсированной нейтралью, как правило, должна применяться блокировка второго цикла АПВ в случае замыкания на землю после АПВ первого цикла (например, по наличию напряжений нулевой последовательности). Выдержка времени ТАПВ во втором цикле должна быть не менее 15-20 с.

    3.3.7. Для ускорения восстановления нормального режима работы электропередачи выдержка времени устройства ТАПВ (в особенности для первого цикла АПВ двукратного действия на линиях с односторонним питанием) должна приниматься минимально возможной с учетом времени погасания дуги и деионизации среды в месте повреждения, а также с учетом времени готовности выключателя и его привода к повторному включению.

    Выдержка времени устройства ТАПВ на линии с двусторонним питанием должна выбираться также с учетом возможного неодновременного отключения повреждения с обоих концов линии; при этом время действия защит, предназначенных для дальнего резервирования, учитываться не должно. Допускается не учитывать разновременности отключения выключателей по концам линии, когда они отключаются в результате срабатывания высокочастотной защиты.

    С целью повышения эффективности ТАПВ однократного действия допускается увеличивать его выдержку времени (по возможности с учетом работы потребителя).

    3.3.8. На одиночных линиях 110 кВ и выше с односторонним питанием, для которых допустим в случае неуспешного ТАПВ переход на длительную работу двумя фазами, следует предусматривать ТАПВ двукратного действия на питающем конце линии. Перевод линии на работу двумя фазами может производиться персоналом на месте или при помощи телеуправления.

    Для перевода линии после неуспешного АПВ на работу двумя фазами следует предусматривать пофазное управление разъединителями или выключателями на питающем и приемном концах линии.

    При переводе линии на длительную работу двумя фазами следует при необходимости принимать меры к уменьшению помех в работе линий связи из-за неполнофазного режима работы линии. С этой целью допускается ограничение мощности, передаваемой по линии в неполнофазном режиме (если это возможно по условиям работы потребителя).

    В отдельных случаях при наличии специального обоснования допускается также перерыв в работе линии связи на время неполнофазного режима.

    3.3.9. На линиях, отключение которых не приводит к нарушению электрической связи между генерирующими источниками, например на параллельных линиях с односторонним питанием, следует устанавливать устройства ТАПВ без проверки синхронизма.

    3.3.10. На одиночных линиях с двусторонним питанием (при отсутствии шунтирующих связей) должен предусматриваться один из следующих видов трехфазного АПВ (или их комбинаций):

    а) быстродействующее ТАПВ (БАПВ)

    б) несинхронное ТАПВ (НАПВ);

    в) ТАПВ с улавливанием синхронизма (ТАПВ УС).

    Кроме того, может предусматриваться однофазное АПВ (ОАПВ) в сочетании с различными видами ТАПВ, если выключатели оборудованы пофазным управлением и не нарушается устойчивость параллельной работы частей энергосистемы в цикле ОАПВ.

    Выбор видов АПВ производится, исходя из совокупности конкретных условий работы системы и оборудования с учетом указаний 3.3.11-3.3.15.

    3.3.11. Быстродействующее АПВ, или БАПВ (одновременное включение с минимальной выдержкой времени с обоих концов), рекомендуется предусматривать на линиях по 3.3.10 для автоматического повторного включения, как правило, при небольшом расхождении угла между векторами ЭДС соединяемых систем. БАПВ может применяться при наличии выключателей, допускающих БАПВ, если после включения обеспечивается сохранение синхронной параллельной работы систем и максимальный электромагнитный момент синхронных генераторов и компенсаторов меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины.

    Оценка максимального электромагнитного момента должна производиться для предельно возможного расхождения угла за время БАПВ. Соответственно запуск БАПВ должен производиться лишь при срабатывании быстродействующей защиты, зона действия которой охватывает всю линию. БАПВ должно блокироваться при срабатывании резервных защит и блокироваться или задерживаться при работе УРОВ.

    Если для сохранения устойчивости энергосистемы при неуспешном БАПВ требуется большой объем воздействий от противоаварийной автоматики, применение БАПВ не рекомендуется.

    3.3.12. Несинхронное АПВ (НАПВ) может применяться на линиях по 3.3.10 (в основном 110-220 кВ), если:

    а) максимальный электромагнитный момент синхронных генераторов и компенсаторов, возникающий при несинхронном включении, меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины, при этом в качестве практических критериев оценки допустимости НАПВ принимаются расчетные начальные значения периодических составляющих токов статора при угле включения 180°;

    б) максимальный ток через трансформатор (автотрансформатор) при угле включения 180° меньше тока КЗ на его выводах при питании от шин бесконечной мощности;

    в) после АПВ обеспечивается достаточно быстрая ресинхронизация; если в результате несинхронного автоматического повторного включения возможно возникновение длительного асинхронного хода, должны применяться специальные мероприятия для его предотвращения или прекращения.

    При соблюдении этих условий НАПВ допускается применять также в режиме ремонта на параллельных линиях.

    При выполнении НАПВ необходимо принять меры по предотвращению излишнего срабатывания защиты. С этой целью рекомендуется, в частности, осуществлять включение выключателей при НАПВ в определенной последовательности, например выполнением АПВ с одной из сторон линии с контролем наличия напряжения на ней после успешного ТАПВ с противоположной стороны.

    3.3.13. АПВ с улавливанием синхронизма может применяться на линиях по 3.3.10 для включения линии при значительных (примерно до 4%) скольжениях и допустимом угле.

    Возможно также следующее выполнение АПВ. На конце линии, который должен включаться первым, производится ускоренное ТАПВ (с фиксацией срабатывания быстродействующей защиты, зона действия которой охватывает всю линию) без контроля напряжения на линии (УТАПВ БК) или ТАПВ с контролем отсутствия напряжения на линии (ТАПВ ОН), а на другом ее конце - ТАПВ с улавливанием синхронизма. Последнее производится при условии, что включение первого конца было успешным (это может быть определено, например, при помощи контроля наличия напряжения на линии).

    Для улавливания синхронизма могут применяться устройства, построенные по принципу синхронизатора с постоянным углом опережения.

    Устройства АПВ следует выполнять так, чтобы имелась возможность изменять очередность включения выключателей по концам линии.

    При выполнении устройства АПВ УС необходимо стремиться к обеспечению его действия при возможно большей разности частот. Максимальный допустимый угол включения при применении АПВ УС должен приниматься с учетом условий, указанных в 3.3.12. При применении устройства АПВ УС рекомендуется его использование для включения линии персоналом (полуавтоматическая синхронизация).

    3.3.14. На линиях, оборудованных трансформаторами напряжения, для контроля отсутствия напряжения (КОН) и контроля наличия напряжения (КНН) на линии при различных видах ТАПВ рекомендуется использовать органы, реагирующие на линейное (фазное) напряжение и на напряжения обратной и нулевой последовательностей. В некоторых случаях, например на линиях без шунтирующих реакторов, можно не использовать напряжение нулевой последовательности.

    3.3.15. Однофазное автоматическое повторное включение (ОАПВ) может применяться только в сетях с большим током замыкания на землю. ОАПВ без автоматического перевода линии на длительный неполнофазный режим при устойчивом повреждении фазы следует применять:

    а) на одиночных сильно нагруженных межсистемных или внутрисистемных линиях электропередачи;

    б) на сильно нагруженных межсистемных линиях 220 кВ и выше с двумя и более обходными связями при условии, что отключение одной из них может привести к нарушению динамической устойчивости энергосистемы;

    в) на межсистемных и внутрисистемных линиях разных классов напряжения, если трехфазное отключение линии высшего напряжения может привести к недопустимой перегрузке линий низшего напряжения с возможностью нарушения устойчивости энергосистемы;

    г) на линиях, связывающих с системой крупные блочные электростанции без значительной местной нагрузки;

    д) на линиях электропередачи, где осуществление ТАПВ сопряжено со значительным сбросом нагрузки вследствие понижения напряжения.

    Устройство ОАПВ должно выполняться так, чтобы при выводе его из работы или исчезновении питания автоматически осуществлялся перевод действия защит линии на отключение трех фаз помимо устройства.

    Выбор поврежденных фаз при КЗ на землю должен осуществляться при помощи избирательных органов, которые могут быть также использованы в качестве дополнительной быстродействующей защиты линии в цикле ОАПВ, при ТАПВ, БАПВ и одностороннем включении линии оперативным персоналом.

    Выдержка временем ОАПВ должна отстраиваться от времени погасания дуги и деионизации среды в месте однофазного КЗ в неполнофазном режиме с учетом возможности неодновременного срабатывания защиты по концам линии, а также каскадного действия избирательных органов.

    3.3.16. На линиях по 3.3.15 ОАПВ должно применяться в сочетании с различными видами ТАПВ. При этом должна быть предусмотрена возможность запрета ТАПВ во всех случаях ОАПВ или только при неуспешном ОАПВ. В зависимости от конкретных условий допускается осуществление ТАПВ после неуспешного ОАПВ. В этих случаях предусматривается действие ТАПВ сначала на одном конце линии с контролем отсутствия напряжения на линии и с увеличенной выдержкой времени.

    3.3.17. На одиночных линиях с двусторонним питанием, связывающих систему с электростанцией небольшой мощности, могут применяться ТАПВ с автоматической самосинхронизацией (АПВС) гидрогенераторов для гидроэлектростанций и ТАПВ в сочетании с делительными устройствами - для гидро- и теплоэлектростанций.

    3.3.18. На линиях с двусторонним питанием при наличии нескольких обходных связей следует применять:

    1) при наличии двух связей, а также при наличии трех связей, если вероятно одновременное длительное отключение двух из этих связей (например, двухцепной линии):

    несинхронное АПВ (в основном для линий 110-220 кВ и при соблюдении условий, указанных в 3.3.12, но для случая отключения всех связей);

    АПВ с проверкой синхронизма (при невозможности выполнения несинхронного АПВ по причинам, указанным в 3.3.12, но для случая отключения всех связей).

    Для ответственных линий при наличии двух связей, а также при наличии трех связей, две из которых - двухцепная линия, при невозможности применения НАПВ по причинам, указанным в 3.3.12, разрешается применять устройства ОАПВ, БАПВ или АПВ УС (см. 3.3.11, 3.3.13, 3.3.15). При этом устройства ОАПВ и БАПВ следует дополнять устройством АПВ с проверкой синхронизма;

    2) при наличии четырех и более связей, а также при наличии трех связей, если в последнем случае одновременное длительное отключение двух из этих связей маловероятно (например, если все линии одноцепные), - АПВ без проверки синхронизма.

    3.3.19. Устройства АПВ с проверкой синхронизма следует выполнять на одном конце линии с контролем отсутствия напряжения на линии и с контролем наличия синхронизма, на другом конце - только с контролем наличия синхронизма. Схемы устройства АПВ с проверкой синхронизма линии должны выполняться одинаковыми на обоих концах с учетом возможности изменения очередности включения выключателей линии при АПВ.

    Рекомендуется использовать устройство АПВ с проверкой синхронизма для проверки синхронизма соединяемых систем при включении линии персоналом.

    3.3.20. Допускается совместное применение нескольких видов трехфазного АПВ на линии, например БАПВ и ТАПВ с проверкой синхронизма. Допускается также использовать различные виды устройств АПВ на разных концах линии, например УТАПВ БК (см. 3.3.13) на одном конце линии и ТАПВ с контролем наличия напряжения и синхронизма на другом.

    3.3.21. Допускается сочетание ТАПВ с неселективными быстродействующими защитами для исправления неселективного действия последних. В сетях, состоящих из ряда последовательно включенных линий, при применении для них неселективных быстродействующих защит для исправления их действия рекомендуется применять поочередное АПВ; могут также применяться устройства АПВ с ускорением защиты до АПВ или с кратностью действия (не более трех), возрастающей по направлению к источнику питания.

    3.3.22. При применении трехфазного однократного АПВ линий, питающих трансформаторы, со стороны высшего напряжения которых устанавливаются короткозамыкатели и отделители, для отключения отделителя в бестоковую паузу время действия устройства АПВ должно быть отстроено от суммарного времени включения короткозамыкателя и отключения отделителя. При применении трехфазного АПВ двукратного действия (см. 3.3.6) время действия АПВ в первом цикле по указанному условию не должно увеличиваться, если отключение отделителя предусматривается в бестоковую паузу второго цикла АПВ.

    Для линий, на которые вместо выключателей устанавливаются отделители, отключение отделителей в случае неуспешного АПВ в первом цикле должно производиться в бестоковую паузу второго цикла АПВ.

    3.3.23. Если в результате действия АПВ возможно несинхронное включение синхронных компенсаторов или синхронных электродвигателей и если такое включение для них недопустимо, а также для исключения подпитки от этих машин места повреждения следует предусматривать автоматическое отключение этих синхронных машин при исчезновении питания или переводить их в асинхронный режим отключением АГП с последующим автоматическим включением или ресинхронизацией после восстановления напряжения в результате успешного АПВ.

    Для подстанций с синхронными компенсаторами или синхронными электродвигателями должны применяться меры, предотвращающие излишние срабатывания АЧР при действии АПВ.

    3.3.24. АПВ шин электростанций и подстанций при наличии специальной защиты шин и выключателей, допускающих АПВ, должно выполняться по одному из двух вариантов:

    1) автоматическим опробованием (постановка шин под напряжение выключателем от АПВ одного из питающих элементов);

    2) автоматической сборкой схемы; при этом первым от устройства АПВ включается один из питающих элементов (например, линия, трансформатор), при успешном включении этого элемента производится последующее, возможно более полное автоматическое восстановление схемы доаварийного режима путем включения других элементов. АПВ шин по этому варианту рекомендуется применять в первую очередь для подстанций без постоянного дежурства персонала.

    При выполнении АПВ шин должны применяться меры, исключающие несинхронное включение (если оно является недопустимым).

    Должна обеспечиваться достаточная чувствительность защиты шин на случай неуспешного АПВ.

    3.3.25. На двухтрансформаторных понижающих подстанциях при раздельной работе трансформаторов, как правило, должны предусматриваться устройства АПВ шин среднего и низшего напряжений в сочетании с устройствами АВР; при внутренних повреждениях трансформаторов должно действовать АВР, при прочих повреждениях - АПВ (см. 3.3.42).

    Допускается для двухтрансформаторной подстанции, в нормальном режиме которой предусматривается параллельная работа трансформаторов на шинах данного напряжения, устанавливать дополнительно к устройству АПВ устройство АВР, предназначенное для режима, когда один из трансформаторов выведен в резерв.

    3.3.26. Устройствами АПВ должны быть оборудованы все одиночные понижающие трансформаторы мощностью более 1 MB·А на подстанциях энергосистем, имеющие выключатель и максимальную токовую защиту с питающей стороны, когда отключение трансформатора приводит к обесточению электроустановок потребителей. Допускается в отдельных случаях действие АПВ и при отключении трансформатора защитой от внутренних повреждений.

    3.3.27. При неуспешном АПВ включаемого первым выключателем элемента, присоединенного двумя или более выключателями, АПВ остальных выключателей этого элемента, как правило, должно запрещаться.

    3.3.28. При наличии на подстанции или электростанции выключателей с электромагнитным приводом, если от устройства АПВ могут быть одновременно включены два или более выключателей, для обеспечения необходимого уровня напряжения аккумуляторной батареи при включении и для снижения сечения кабелей цепей питания электромагнитов включения следует, как правило, выполнять АПВ так, чтобы одновременное включение нескольких выключателей было исключено (например, применением на присоединениях АПВ с различными выдержками времени).

    Допускается в отдельных случаях (преимущественно при напряжении 110 кВ и большом числе присоединений, оборудованных АПВ) одновременное включение от АПВ двух выключателей.

    3.3.29. Действие устройств АПВ должно фиксироваться указательными реле, встроенными в реле указателями срабатывания, счетчиками числа срабатываний или другими устройствами аналогичного назначения.
    [ ПУЭ]

    Тематики

    Обобщающие термины

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > автоматическое повторное включение

  • 16 трубопроводная арматура

    1. valves
    2. tube fittings
    3. piping accessories
    4. pipeline valves
    5. pipeline fittings
    6. pipeline accessories
    7. pipe fittings
    8. fitting

     

    трубопроводная арматура
    Техническое устройство, устанавливаемое на трубопроводах и емкостях, предназначенное для управления (перекрытия, регулирования, распределения, смешивания, фазоразделения) потоком рабочей среды (жидких, газообразных, газожидкостных, порошкообразных, суспензий и т.п.) путем изменения площади проходного сечения.
    [ ГОСТ Р 52720-2007]

    арматура трубопроводная
    Устройства, позволяющие регулировать и распределять жидкости и газы, транспортируемые по трубопроводам, и подразделяющиеся на запорную арматуру (краны, задвижки), предохранительную (клапаны), регулирующую (вентили, регуляторы давления), отводную (воздухоотводчики, конденсатоотводчики), аварийную (сигнальные средства) и др.
    [СНиП I-2]

    трубопроводная арматура
    Устройства, устанавливаемые на трубопроводах и обеспечивающие управление (отключение, распределение, регулирование, смешивание и др.) потоками рабочих сред путем изменения проходного сечения
    [ПБ 03-108-96]

    арматура трубопроводная
    Устройства, детали и приборы, устанавливаемые на трубопроводных системах для регулирования и измерения расхода транспортируемых продуктов, а также для поддержания заданного давления в сети
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

      Примечание
    Далее в тексет жирным шрифтом выделены термины, приведенные в ГОСТ Р 52720-2007 "АРМАТУРА ТРУБОПРОВОДНАЯ. Термины и определения".   Из определения следует, что арматура управляет потоком рабочей среды путем изменения площади проходного сечения. Управление может заключаться: Рабочей средой может быть газ, жидкость, газожидкостная смесь, сыпучий материал или суспензия. Арматура управляет потоком рабочей среды, изменяя проходное сечение своей проточной части. Изменение проходного сечения происходит в затворе. Затвор – это совокупность подвижного (запирающего или регулирующего) и неподвижного ( седло) элементов арматуры, которые образуют проходное сечение, а в закрытом состоянии – соединение, препятствующее протеканию рабочей среды. Перемещение подвижного элемента происходит под действием рабочей среды или привода ( исполнительного механизма). Арматура, в которой перемещение подвижного элемента затвора происходит под действием рабочей среды, может быть арматурой прямого действия (работает от энергии рабочей среды без использования вспомогательных устройств) или арматурой непрямого действия  (работает от энергии рабочей среды с использованием встроенного импульсного механизма либо вынесенной импульсной арматуры). В зависимости от потребляемой энергии привод может быть ручным, электрическим, электромагнитным, гидравлическим, пневматическим или их комбинацией. Подвижный элемент арматуры, осуществляющий передачу движения от привода (исполнительного механизма) к запирающему или регулирующему элементу, называется шпинделем, если он передает крутящий момент, или штоком, если он передает поступательное усилие. Механическое устройство для перемещения запирающего элемента называют приводом, а для перемещения регулирующего элемента – исполнительным механизмом. Герметичность подвижного соединения привода (исполнительного механизма) с затвором обеспечивается с помощью уплотнения (сальникового , сильфонного) или не образующего зазоров упругого элемента (мембраны, шланга).  Арматура находится в окружающей среде (например, в воздухе или морской воде) и управляет потоком рабочей среды (например, пара или пульпы). Если ТА управляется гидравлическим или пневматическим приводом (исполнительным механизмом), то силовое воздействие привода (исполнительного механизма) на запирающий (регулирующий) элемент создает управляющая среда (например, сжатый воздух). Если для управления ТА используется пневмоавтоматика или гидроавтоматика, то команду (сигнал) от системы автоматического регулирования к позиционеру или другому виду реле передает командная среда (например, сжатый воздух). Для контроля арматуры применяется испытательная среда (например, вода при гидравлическом испытании на прочность).  1          Основные узлы, элементы и детали арматуры Ниже перечислены названия узлов и деталей арматуры, приведенные в ГОСТе 52720-2007 (термины и определения). Арматура может иметь различную конструкцию, поэтому обязательными частями являются только корпус, затвор и присоединительные патрубки (но у резервуарной арматуры, которая присоединяется непосредственно к сосуду, патрубок только один).
    • корпусные детали (как правило, корпус и крышка);
    • основные детали;
    • затвор (запирающий или регулирующий элемент и седло);
    • седло;
    • запирающий элемент (золотник, шибер и пр.),
    • регулирующий элемент (плунжер и др.),
    • разрывная мембрана;
    • импульсный механизм;
    • входной патрубок;
    • выходной патрубок;
    • привод;
    • исполнительный механизм;
    • позиционер;
    • ручной дублер (узел подрыва);
    • сильфон;
    • уплотнение (сальниковое, сильфонное);
    • проточная часть;
    • шпиндель;
    • шток;
    • чувствительный элемент.
     2          Классификация арматуры ТА классифицируется по различным признакам. 2.1       по назначению: 2.2       по области применения:
    • пароводяная,
    • газовая,
    • нефтяная,
    • энергетическая,
    • химическая,
    • судовая,
    • резервуарная.
    2.3      По способу управления:
    • приводная,
    • под дистанционное управление,
    • с автоматическим управлением,
    • с ручным управлением.
    2.4       по способу герметизации относительно внешней среды:
    • сальниковая,
    • мембранная,
    • сильфонная,
    • шланговая.
    2.5       по температурному режиму:
    • криогенная (рабочие температуры ниже -153 °С),
    • для холодильной техники (рабочие температуры от -153 до -70 °С),
    • для пониженных температур (рабочие температуры от -70 до -30 °С),
    • для средних температур (рабочие температуры до +455 °С),
    • для высоких температур (рабочие температуры до +600 °С),
    • жаропрочная (рабочие температуры свыше +600 °С).
    2.6       по материалу корпуса:
    • чугунная,
    • стальная,
    • из цветных металлов и т. д.
    2.7       по конструкции корпуса: 2.8       по конструкции присоединительных патрубков:
    • муфтовая,
    • фланцевая,
    • цапковая,
    • штуцерная,
    • под приварку.
    2.9       по способу расположения:
    • для установки только на горизонтальных трубопроводах в вертикальном положении,
    • на горизонтальных и вертикальных трубопроводах в любом положении,
    • только на вертикальных трубопроводах.
    2.10       по принципу управления и действия: 2.11       по функциональному назначению ( виды арматуры):  2.12     по конструкции затвора (по направлению перемещения запирающего или регулирующего элемента относительно потока рабочей среды) ( типы арматуры)  3          Разновидности ТА Помимо указанных видов и типов существует множество разновидностей ТА, выделяемых по области применения, конструкции, функциям и прочим признакам и по их сочетанию. Здесь имеет смысл отметить только самые распространенные из них.  3.1       по функциональному назначению  3.2       по конструкции затвора 3.3       по способу присоединения к трубопроводу
    • под приварку,
    • муфтовая,
    • фланцевая,
    • бесфланцевая,
    • цапковая,
    • штуцерная
    3.4       по способу герметизации соединения привода с затвором 3.5       по функциональному назначению и конструкции 4          Основные параметры и технические характеристики Для удобства условно разделим их на монтажные параметры, эксплуатационные параметры и технические характеристики  4.1       Монтажные параметры
    • номинальный диаметр DN (Нрк. диаметр условного прохода; условный проход; номинальный размер; условный диаметр; номинальный проход),
    • строительная длина L, строительная высота, конструкция и размеры присоединительных патрубков.
     4.2       Эксплуатационные параметры 4.3       Технические характеристики

    [Павел Лысенко, Интент]

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > трубопроводная арматура

  • 17 усилитель мощности

    1) Military: booster
    3) Construction: power stage
    4) Music: power amp
    7) Hi-Fi. power amplifier (аудиокомпонент, усиливающий сигнал линейного уровня до мощности, достаточной для управления громкоговорителями)

    Универсальный русско-английский словарь > усилитель мощности

  • 18 сигнализация

    аварийная сигнализация
    warning indication
    бленкерная сигнализация
    flag alarm
    бленкер сигнализации отказа
    failure flag
    блок сигнализации предельного крена
    limit bank warning unit
    блок управления аварийной сигнализации
    warning system control unit
    визуальная сигнализация
    visual warning
    главное табло сигнализации пожара
    master fire light
    датчик сигнализации положения шасси
    gear position glide-path transmitter
    звуковая аварийная сигнализация
    audio warning device
    звуковая сигнализация
    aural warning
    лампа аварийной сигнализации
    emergency light
    лампа сигнализации выбора
    selection light
    ложная сигнализация
    false warning
    предупредительная сигнализация
    caution indication
    противоугонная сигнализация
    hijack alarm
    реле сигнализации отказа питания
    power fail relay
    решетка системы сигнализации
    pressure pads
    световая аварийная сигнализация
    light alarm
    световая сигнализация
    annunciation
    сигнализация аварийной обстановки в полете
    air alert warning
    сигнализация захвата цели радиолокатором
    radar lock-on indication
    сигнализация обледенения
    ice warning
    сигнализация об опасном сближении с землей
    ground proximity warning
    сигнализация о пожаре
    fire warning
    сигнализация отказа
    fail warning
    сигнализация отказов
    fault annunciation
    сигнализация самопроизвольного ухода с заданной высоты
    altitude alert warning
    система аварийной сигнализации
    emergency warning system
    система автоматической сигнализации углов атаки, скольжения и перегрузок
    angle-of-attack, slip and acceleration warning system
    система обнаружения и сигнализации пожара
    fire detection system
    система общей аварийной сигнализации
    general alarm system
    система пожарной сигнализации
    fire warning system
    система предупредительной сигнализации
    1. caution system
    2. warning system система предупредительной сигнализации воздушного судна
    aircraft warning system
    система сигнализации опасного скольжения
    slip warning system
    система сигнализации опасной высоты
    altitude alert system
    система сигнализации опасности захвата
    hijack alarm system
    (воздушного судна) система сигнализации о приближении к сваливанию
    stall warning system
    (на крыло) система сигнализации отказа приборов
    instrument failure warning system
    система сигнализации отклонения от курса
    deviation warning system
    система сигнализации перегрузок
    acceleration warning system
    система сигнализации предельных углов атаки
    angle-of-attack warning system
    система сигнализации рассогласования закрылков
    flaps asymmetry warning system
    система сигнализации сближения
    proximity warning system
    (воздушных судов) табло предупредительной сигнализации
    caution annunciator
    табло сигнализации опасной вибрации
    vibration caution annunciator
    табло сигнализации опасной высоты
    altitude alert annunciator
    табло сигнализации отказа
    failure warning light
    табло сигнализации отказа системы сравнения
    comparison warning light
    табло сигнализации пожара
    fire warning light
    табло сигнализации положения реверса тяги
    thrust reverser light
    устройство сигнализации о вторжении
    intrusion detection device
    цвет аварийной сигнализации
    warning light color
    цепь сигнализации
    warning circuit

    Русско-английский авиационный словарь > сигнализация

  • 19 устройство релейной защиты

    1. protective gear
    2. protection gear
    3. protection equipment relay system (USA)

     

    устройство релейной защиты
    -
    [Интент]

    устройство защиты

    Устройство, включающее в себя одно или несколько реле защиты и, при необходимости, логические элементы, предназначенное для выполнения одной или нескольких предусмотренных функций защиты.
    Примечание - Устройство защиты является частью системы защиты. Примеры: Устройство дистанционной защиты, устройство дифференциально-фазной защиты (одно устройство дифференциально-фазной защиты представляет собой часть системы дифференциально-фазной защиты для одного конца линии).
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    устройство (релейной) защиты

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    устройство релейной защиты и автоматики
    РЗА
    терминал

    -

    В настоящее время на объектах энергетики внедряется все больше устройств релейной защиты и автоматики (терминалов), обладающих возможностью обмена информацией между собой по цифровым каналам связи.
    Для расширения возможностей проектирования, конфигурирования, управления и обеспечения функциональной совместимости между устройствами разных фирм и различного назначения разработан стандарт МЭК 61850, который уже широко используется на объектах энергетики.
    Внедрение этого стандарта облегчает процесс монтажа, наладки и проверки современных устройств РЗА, но при этом возникают специфические проблемы, связанные с необходимостью иметь соответствующие средства обработки информации, передаваемой по каналу связи Ethernet.

    [ http://www.dynamics.com.ru/userfiles/file/articles/ar2.pdf]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > устройство релейной защиты

  • 20 функциональный блок

    1. functional assembly
    2. functional block
    3. function box
    4. functional unit

    протокольный блок; блок реализации протоколаprotocol unit

    5. operational unit

    Русско-английский большой базовый словарь > функциональный блок

См. также в других словарях:

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»